
�

Date Published:

Reviewer:

Licenses:

This article is licensed under: cb

Keywords:

research data management,

visualization, figure, plot, mapping,

referencing, ID

Data availability:

Data can be found here:

matplotlib_example.py

Software availability:

Software can be found here:

git.rwth-aachen.de

/plotid/plotid_python

RESEARCH ARTICLE

plotID – a toolkit for connecting research data and

visualization

Martin Hock�
1

Hannes Mayr�
1

Manuela Richter�
1

Jan Lemmer�

Peter F. Pelz�
1

1. Chair of Fluid Systems, Technische Universität Darmstadt, Darmstadt.

Abstract. While visualizations can carry a vast amount of information compared to text and

are often used for validation, references to data and metadata resulting in these visualizations

are not common. To provide such references, the software plotID provides two key modules

that strive to seamlessly integrate into a generic, Python-based research workflow. The

module tagplot generates or accepts a unique ID and anchors it (visibly) as a reference to

a figure or picture. The module publish exports the figure along with the data, code and

parameters used in its creation into folders named by the reference ID for later reuse. The

tools work to provide aid in research data management with simple base functionality as

opposed to encompassing management frameworks. Later features and improvements will

expand the scope and applicability to other programming environments.

1 Statement of need1

Scientific results are published in the form of hypotheses, axioms and equations as well as text2

and diagrams. Likewise, research software is being published more and more frequently. The3

comprehensibility of scientific results is indispensable for scientific discourse and reproducibility.4

Hypotheses, axioms and equations are usually published in text form and can be referenced5

accordingly. Software can be made traceable and referencable through the use of version control6

software. But what about diagrams? A diagram published in a paper is difficult to trace because7

the (raw) data is usually not available. However, the traceability of diagrams and the data they8

contain is not only a challenge in publication but also in everyday research. Diagrams are used for9

visualization and are therefore often produced for interim results. While the researcher continues10

the research process with investigations, experiments or simulations, volatile but important11

information like metadata, background information and details of the data processing are lost.12

To be able to reconstruct the complete path, a treasure map is needed, starting from a publication,13

marking major landmarks of the process back to the raw data and metadata. This map needs14

to be provided along with the product that will be reviewed the most – the created diagram. If15

diagrams – regardless of whether they are published later or only serve as interim results – are16

1

https://git.rwth-aachen.de/plotid/plotid_python/-/blob/main/examples/matplotlib_example.py
https://git.rwth-aachen.de/plotid/plotid_python
https://git.rwth-aachen.de/plotid/plotid_python
https://orcid.org/0000-0001-9917-3152
https://orcid.org/0000-0001-7368-5176
https://orcid.org/0000-0003-1060-2622
https://orcid.org/0000-0002-0638-1567
https://orcid.org/0000-0002-0195-627X

RESEARCH ARTICLE plotID

Figure 1: Research workflow from left to right; afterwards following the chain of references from

right to left

’plotID-referencing’ by Martin Hock, licensed under CC-BY-SA 4.0 cba

provided with an identifier which connects to previous steps, then traceability can be ensured.17

Figure 1 shows the order in which crucial elements are created and how the reference chain18

tracks back.19

A tool designed to meet these needs must satisfy the following requirements:20

• Diagrams must have a unique identifier.21

• The identifier must reference the raw data, relevant metadata and the code used to process22

the data.23

• The method must be easy to implement into the existing research workflow.24

To reduce the effort of organizing figures along with all necessary data and metadata for later25

review and reuse, the tool plotID was developed. plotID meets all the above-mentioned require-26

ments. The tool is limited to usage in an existing Python environment, but investigations on27

enabling independent installation and execution or offering plotID as a web-based service are28

ongoing. The software depends on multiple other Python libraries. It is currently limited to29

visualizations from the Matplotlib-library[17] and general picture files such as PNG and JPG.30

Researchers often tend to keep an Excel table, noting downmanually which data file corresponded31

with which result along with input parameters. Sometimes an ID system is used (counting up or32

using the date), but interim results like visualizations – used to verify results – are usually not33

included. Reviewing and understanding the environment of solutions used in and specifically34

created for research data management (RDM) remains an ongoing process. The named products35

in this paragraph are meant to provide some overview and examples but are by no means a36

comprehensive or rated list. The reviewed solutions range from simple local scripts and libraries37

(like plotID), backup and synchronization software (for filesystem like ZFS[23] and for folders38

like rsync[25]), software version control (git[5], svn[1]) and software to extend on version control39

(git LFS[6], git-fat[15], git-annex[7]) to better handle binary and large data up to dedicated40

workflow management systems (DataLad[13], DVC[3], signac[26]). Another area of solutions41

focuses on providing the working environment by integrating documentation with code (Jupyter42

Notebooks[21]), providing bespoke and versioned Virtual Research Environments (VREs) or43

ing.grid, 2023 2

https://creativecommons.org/licenses/by-sa/4.0/

RESEARCH ARTICLE plotID

offering programmable or fixed – often discipline-specific – schematics in Electronic Laboratory44

Notebooks (ELNs such as eLabFTW[2], RSpace[24]). With more comprehensive solutions and45

added functionality for sharing and exporting data, products lean more towards a client-server46

structure or even a fully hosted product with web and API interfaces. Many solutions are Open47

Source with Software as a Service (SaaS) offerings. Versioning often uses hashing algorithms for48

security reasons, thus providing unique identifiers for a specific state (snapshot) out of the box,49

although those are not always used for identification in user interfaces. Some hosted services50

implement filesystem-level software to equip each data resource with identifiers to track them51

independently of their current storage location (iRODs[14]). Structuring and organizing data is52

part of most RDM solutions and even rather strict ELN products offer to append files, images53

and comments to their organizational units (a probe or process). Export and sharing of research54

data along with its metadata is an integral part of most RDM solutions, and most offer more55

refined features and compatibility than plotID. DVC (Data Version Control) can create plots and56

visualizations as part of the versioning workflow as well as overlaying multiple versions to show57

differences between plotted results [29].58

While the organization of data, metadata and code as much as identification, versioning and59

export could be found in several products, the unique feature of applying an ID visibly to a60

visual representation is not provided in any examined solution. With the big difference in scope,61

plotID could be implemented as part of a workflow complementing most of the above-mentioned62

solutions. Only some of the most restrictive ELNs or filesystem-level operations are unlikely to63

be compatible.64

2 Methodology65

The developed tool plotID is a software solution that covers the needs specified in section 1. The66

underlying concepts and methods of the software are independent of the programming language.67

The software aims to support the research workflow shown in Figure 2 and to enable traceability.68

plotID aims to help during the early research process to decrease the work of making publications69

reproducible later. To ensure ease of use, the tool has been designed to be integrated seamlessly70

into existing scripts. For this purpose, a graphical user interface (GUI) has been omitted. Instead,71

two main functions (building blocks) are provided, which can be inserted into existing user72

scripts as one-liners. They are the core of plotID. The first module creates a (unique) ID and73

stamps this ID onto an object containing a visualization, while the second module helps organize74

all relevant code, software, and data that went into creating this graphic, into one complete75

package. Furthermore, connectivity to existing identifiers is ensured. If a specific visualization76

is later chosen to be included in a publication, the ID can be replaced by a permanent identifier77

like a DOI and the package of code, software and data can be published at the location referenced78

by the DOI. The ID in the published paper will then directly reference the data, software and79

code used to create it, hence curating reproducibility. In the following, plotID is presented in80

more detail using the Python implementation.81

ing.grid, 2023 3

RESEARCH ARTICLE plotID

Figure 2: Workflow integrating the plotID core functions

’plotID-workflow’ by Martin Hock, licensed under CC-BY-SA 4.0 cba

3 Python – Implementation82

The first version of plotID was implemented in MATLAB since this is the most widely used83

programming language in the local working environment and the language the authors had the84

highest familiarity with. After reaching a usable state, the focus shifted to rewriting the tool in85

Python, the second most used programming language (locally). The goal was to make plotID86

accessible to a broader audience. Globally Python is a lot more popular than MATLAB with a87

currently 15 times higher rating on the TIOBE index[27]. Moreover, in contrast to MATLAB,88

Python better fulfils the requirements for reusable software in the sense of the FAIR1 principles89

as defined by the Force11 group [32], described for software specifically by Lamprecht et al[16].90

Although MATLAB code can be (and often is) Open Source as well this proprietary, commercial91

software needs to be paid for. This diminishes it’s accessibility even if older versions are archived92

properly and provided by the company. In addition to being widely used in the engineering and93

research community, Python is non-proprietary, Open Source, easy to install and even shipped94

along many operating systems. Python also offers a package index (PyPI[22] and installer95

(pip[4]) for easy distribution of software packages.96

4 Core functions97

The core functions of plotID are tagplot() and publish(). tagplot() generates an ID and adds98

this ID to the figure object creating a new container object. publish() takes this container object99

to bundle the figure, the script file, which plotID was called from and the processed data files100

and store them together in a folder named with the ID. In addition the script is parsed and a list101

of required dependencies is generated and added as text file compatible to the Python package102

installer[4]. Additional features might bring additional steps with the further development of103

plotID and a widening of its scope.104

1. FAIR: Findable, Accessible, Interoperable, Reusable

ing.grid, 2023 4

https://creativecommons.org/licenses/by-sa/4.0/

RESEARCH ARTICLE plotID

PublishOptions object:

publish_container

PlotOptions object:

option_container

publish()

Export data and plots

by calling

publish_container.export()

Validate input

Create instance of

PublishOptions:

publish_container

User:

publish(

PlotIDTransfer object)

export()

Save figures by

calling save_plot
Select storage method

individual_data_storage()
Copy script, files and

saved plots to destination

centralized_data_storage() not implemented yet

Export figure

to file

class PublishOptions

Attributes

figs_and_ids
src_datapaths
dst_path
plot_names
**kwards

Operations

validate_input()
export()

User:

tagplot()

tagplot()

Validate input

Create instance of

PlotOptions:

option_container

tagplot_matplotlib(

option_container)

tagplot_matplotlib

Validate input
Create ID by calling

 create_id()

Print IDs on

corresponding figures

Return tagged figures

 as PlotIDTransfer object

class PlotOptions

Attributes

figs
engine
location
**kwargs

Operations

validate_input()

class PlotIDTransfer

Attributes

figs
figure_ids

Operations

PlotIDTransfer object

and publish options

figure and

plot_names

path to

saved file

pl
ot

 o
pt

io
ns

figures

and IDs

PlotIDTransfer

object

Figure 3: System architecture diagram

’plotID-system-architecture’ by Hannes Mayr, licensed under CC-BY-SA 4.0 cba

ing.grid, 2023 5

https://creativecommons.org/licenses/by-sa/4.0/

RESEARCH ARTICLE plotID

4.1 tagplot()105

The tagplot() function creates an ID and tags the figure object with this ID.106

4.1.1 ID107

tagplot() creates a unique ID (unique in a local system), that consists of a static part and a108

generated part. The static part is handed over as a parameter and is meant to be used to identify a109

project or organizational unit to which the figure is assigned. The generated part is by default110

created from the UNIX-Time stamp in hexadecimal form. As an alternative option, a random111

number generator can be used. The implementation of the ID is modular, easing the integration112

of individual needs or sources for IDs. Optionally the ID can be encoded into a QR code for113

improved machine readability.114

4.1.2 Tagging115

In Python, there are multiple available packages that can produce visualizations from data.116

Adding an ID needs to be implemented for many of these engines separately. For now, plotID117

supports figures created with Matplotlib and raw image files. The ID is added as an attribute to118

the object and the graphical, visible item.119

4.1.3 Arguments120

Necessary input arguments for tagplot(figs, engine [, **kwargs]):121

• figs: the figure object or a list of objects, that is to be tagged122

• engine: the plot/image engine to be used (currently only ’matplotlib’ and ’image’ (for plain123

image files) are supported)124

Optional input arguments are:125

• prefix: to define a static part of each created ID (prefix=’Ing.grid-’). Type: string.126

• id_method: to define how the unique part of the ID is created (’random’, ’time’). Type:127

string.128

• location: to define the position the ID is displayed in, relative to the full graphical object129

(cardinal directions like ’west’, custom inputs for rotation and position are currently being130

implemented). Type: string.131

• qrcode: Set to true to create a QRcode instead of text. Type: Boolean.132

The function’s output is a PlotIDTransfer Object)which provides a compatible method to transfer133

the output of all plot engines with additional information, most importantly the ID.134

At this point the figure object inside can still be modified, for example, to adjust colours and135

positioning or to recreate the full plot before exporting a final version.136

ing.grid, 2023 6

RESEARCH ARTICLE plotID

4.2 publish()137

This function starts the export process. The source files of the processed data, the visualization138

(including the tagged ID), and the script hosting the call to the publish function are copied139

together into a destination folder.140

4.2.1 Script141

A function in Python has access to the file path of the script which it was called from. With this,142

the code for calculations can easily be collected. For this reason, publish() cannot be called from143

the command line or from within a script that has been started with the ’python -m’ flag.144

For dependent packages, the python compiler can report imported modules with the installed145

version. Those are then written into a file named ”required_imports.txt”. This file can be directly146

read by the Python package installer to install the code’s dependencies. The import for the plotID147

package is removed from this list, and in the script file calls to plotID functions are changed to148

comments, to avoid unnecessary exports. Furthermore, the user has to take care of the necessary149

Python version (if restrictions apply) and of including additional function files as data paths, if150

they have not been imported but are still accessed by the executed script.151

4.2.2 Data files152

Data files are handed over as a list of file or folder paths. Ideally, the script already manages153

a list of all files that are read during the execution of the script. It is up to the user to control154

this. By default, the data files are copied to each exported package. For large data files, the155

centralized flag is intended. It is up to the user to decide which resources to add to the export, by156

placing them in the list of data paths or not.157

By default, the data files are copied to into each export. The ’centralized’ selection is optional.158

With this, the data is copied to a central folder, relative to the export packages. For further159

exports, the data files are compared to the ones already present and only copied if new data160

files are selected. With this, a publication on a data repository could encompass the data files in161

addition to multiple ”satellite” folders containing the specific script, parameters and graphics.162

For HDF5 files, each package can contain an empty HDF5 file that only contains a link to the163

”real” central data file. While this has proven to be useful in the MATLAB implementation, the164

Python version aims to include the ’centralized’ option in a future release.165

Remote files on network drives are handled just like local files and while HTTP(s) URLs currently166

lead to a FileNotFound error, they will be supported in a future release. It is recommended to167

not add large data or data available from acknowledged repositories into packages meant for168

publication. plotID will not support additional data or transfer protocols. The exported script169

should suffice to reference and showcase usage of remote data sources. Additional commentary170

or documentation can be added to the export as a data file.171

4.2.3 Arguments172

Necessary input arguments for publish(figs_and_ids, src_datapath, dst_path [, **kwargs]) are:173

ing.grid, 2023 7

RESEARCH ARTICLE plotID

• src_datapath: This can be a single or a list of file or folder paths for source data and174

additional function files. The type is a string or a list of strings.175

• dst_path: This is the destination folder path. If it does not exist, the folder will be created.176

The type is a string.177

• figure: This is a figure object, the exact class depends on the plot engine used. This object178

will be turned into an image file.179

Optional input arguments:180

• data_storage: Currently only ’individual’ and ’centralized’ are available. ’Individual’ will181

store all data in each exported package, while ’centralized’ stores the data files in a central182

folder separate from the packages containing script and image files. To be implemented.183

Type: string or file path.184

• plot_name: This is the name for the graphics objects. The type is a string or list of strings.185

If a single name is passed for multiple objects, a raising number will be added. If no name186

is passed, the ID will be used as the file name. Type: string or a list of strings.187

5 Example script188

The following script shows how plotID is used.189

10 # %% Import modules190

11 import numpy as np191

12 import matplotlib.pyplot as plt192

13 from plotid.tagplot import tagplot193

14 from plotid.publish import publish194

15195

16 # %% Set Project ID196

17 PROJECT_ID = "MR05_"197

18198

19 # %% Create sample data199

20 x = np.linspace(0, 10, 100)200

21 y = np.random.rand(100) + 2201

22 y_2 = np.sin(x) + 2202

23203

24 # %% Create sample figures204

25205

26 # 1. figure206

27 FIG1 = plt.figure()207

28 plt.plot(x, y, color="black")208

29 plt.plot(x, y_2, color="yellow")209

30210

31 # 2. figure211

32 FIG2 = plt.figure()212

33 plt.plot(x, y, color="blue")213

ing.grid, 2023 8

RESEARCH ARTICLE plotID

34 plt.plot(x, y_2, color="red")214

38 # If multiple figures should be tagged, figures must be provided as215

list.216

39 FIGS_AS_LIST = [FIG1, FIG2]217

In this part, the plotID modules and those necessary to create figures and images are imported.218

The variable PROJECT_ID is set to provide the static part of the ID. Random data is used to219

create two figures with Matplotlib.220

42 FIGS_AND_IDS = tagplot(221

43 FIGS_AS_LIST,222

44 "matplotlib",223

45 location="west",224

46 id_method="random",225

47 prefix=PROJECT_ID,226

48 qrcode=True,227

49)228

Both Matplotlib objects are tagged with a generated ID. Using default options this call fits into a229

single line.230

54 publish(FIGS_AND_IDS, ["../README.md", "../docs", "../LICENSE"], "231

data")232

Files (README.md and LICENSE) and a folder from the code repository are used in place of233

research data files. The string ”data” is the relative path to the destination folder. This also shows234

that the workflow does not depend on any kind of file format or pre-organized structures. Any235

kind of data can be used. If the library used for creating the visualization is not (yet) supported,236

the resulting image file can still be tagged.237

Figure 4 shows the resulting export folder with (renamed) data files, the script file ”matplotlib_ex-238

ample.py” and the tagged plot.239

6 Distribution240

Providing easy ways to acquire and use the software is important for adoption. The code is241

Open Source under the Apache-v2.0 license. plotID requires a Python version ≥3.10 and is242

OS-independent. The current release version is v0.3.1. Following Semantic Versioning[20] this243

indicates that the public API is not considered stable yet.244

At this time, the following distribution methods are available and described in the repository’s[12]245

README file.246

6.1 Source Code247

The plain source code is publicly available on a GitLab repository located under git.rwth-248

aachen.de/plotID/plotID_python/[12] and can be directly downloaded or cloned with git.249

ing.grid, 2023 9

https://git.rwth-aachen.de/plotID/plotID_python/
https://git.rwth-aachen.de/plotID/plotID_python/
https://git.rwth-aachen.de/plotID/plotID_python/

RESEARCH ARTICLE plotID

Figure 4: Example export folder and tagged plot

’plotID-example-export’ by Martin Hock, licensed under CC-BY-SA 4.0 cba

1 git clone https://git.rwth-aachen.de/plotid/plotid_python.git250

2 cd plotid_python251

3 pip install -r requirements.txt252

4 pip install .253

6.2 Python Package254

plotID is listed in the official Python Package Index (PyPI)[22]. The installation is done with the255

following command:256

pip install plotid257

Distributing plotID independently from an existing Python installation is one of the aims of258

later versions. Possible ways to achieve this are providing compiled executable files or a central259

web-hosted service.260

7 Ensuring good software quality261

To ensure continuous good software quality, we adhere to best practices and the style guide262

PEP-8[19]. This includes comments, docstrings and code formatting. To ensure adherence to263

these guidelines, automated tests on the code are implemented.264

7.1 Unit tests265

Python offers various libraries for unit testing. plotID is using the unittest module[28], which is266

part of the Python standard library. Tests for each function are defined in the tests folder, along267

with the runner_test.py script which organizes the execution of the tests, by discovering the test268

files based on their location. The coverage module measures how much of the code is covered269

by the tests, and total coverage of less than 95% is considered a failure. The tests are executed270

by a GitLab CI/CD pipeline[10] with every commit and merge request. Additional Jobs in the271

pipeline execute Pylint[9] and Flake8[8] to check against coding style, programming errors and272

ing.grid, 2023 10

https://creativecommons.org/licenses/by-sa/4.0/

RESEARCH ARTICLE

cyclomatic complexity. Commits that fail the pipeline tests cannot be merged into the main273

branch and will not make it into a release version. In the future, additional tests e.g. against274

security risks introduced by dependencies and more detailed reports are planned.275

7.2 Documentation276

To ensure easy access and understanding of the code, Python docstrings[18] have been imple-277

mented in the source code from the beginning. The docstrings are compiled into HTML using278

the Sphinx[30] Python package and GitLab CI-CD[10] creating an automatically generated API279

reference. The documents are hosted using GitLab Pages[11]. This documentation[31] will be280

improved by adding the readme, example code, example use cases and an introductory text until281

version 1.0.282

8 Conclusion283

The idea of plotID is a simple one: creating snapshots of work. As with many research data284

management operations, the benefit created through additional effort presents itself only at a285

later point. Benefits might be harvested by the creators of visualizations themselves by making286

access to their previous work easier for their own reuse.287

The code and open-source implementation are still work-in-progress, but the core functionality is288

present. There are many ideas to improve and add features reported already and progress in early289

development happens fast, so many changes should be expected. This paper should be taken290

as an introduction to the tool and its principles - not as up-to-date documentation. Bug reports,291

merge requests with code, ideas for features and all feedback are welcome and best voiced in the292

GitLab repository[12].293

9 Acknowledgements294

The authors would like to thank the Federal Government and the Heads of Government of the295

Länder, as well as the Joint Science Conference (GWK), for their funding and support within the296

framework of the NFDI4Ing consortium. Funded by the German Research Foundation (DFG) -297

project number 442146713.298

10 Roles and contributions299

Martin Hock: Conceptualization, Methodology, Coding, Tests, Writing – original draft300

Hannes Mayr: Coding, Tests, Methodology301

Manuela Richter: Conceptualization, Methodology, Coding302

Jan Lemmer: Conceptualization, Methodology303

Peter F. Pelz: Project administration, Supervision, Funding Acquisition304

ing.grid, 2023 11

RESEARCH ARTICLE

References305

[1] Apache Subversion. 2022. URL: https://subversion.apache.org/ (visited on306

11/15/2022).307

[2] Nicolas CARPi, Alexander Minges, and Matthieu Piel. “eLabFTW: An open source308

laboratory notebook for research labs”. In: Journal of Open Source Software 2.12 (2017),309

p. 146. DOI: 10.21105/joss.00146. URL: https://doi.org/10.21105/joss.00310

146.311

[3] Data Version Control - DVC. 2022. URL: https://dvc.org/ (visited on 11/15/2022).312

[4] The pip developers. pip · PyPI. 2023. URL: https://pypi.org/project/pip/ (visited313

on 03/08/2023).314

[5] Git. 2022. URL: https://git-scm.com/ (visited on 11/15/2022).315

[6] Git Large File Storage | An open source Git extension for versioning large files. 2022.316

URL: https://git-lfs.github.com/ (visited on 11/15/2022).317

[7] git-annex. 2022. URL: https://git-annex.branchable.com/ (visited on 11/15/2022).318

[8] GitHub. flake8/index.rst at main · PyCQA/flake8. 2022. URL: https://github.com319

/PyCQA/flake8 (visited on 08/29/2022).320

[9] GitHub. PyCQA/pylint: It’s not just a linter that annoys you! 2022. URL: https://gith321

ub.com/PyCQA/pylint (visited on 08/29/2022).322

[10] GitLab CI/CD | GitLab. 2022. URL: https://docs.gitlab.com/ee/ci/ (visited on323

08/19/2022).324

[11] GitLab Pages | GitLab. 2022. URL: https://docs.gitlab.com/ee/user/project325

/pages/ (visited on 08/29/2022).326

[12] GitLab RWTHAachen. PlotID / plotID_python · GitLab. 2022. URL: https://git.rw327

th-aachen.de/plotid/plotid_python (visited on 08/19/2022).328

[13] Yaroslav O. Halchenko et al. “DataLad: distributed system for joint management of code,329

data, and their relationship”. In: Journal of Open Source Software 6.63 (2021), p. 3262.330

DOI: 10.21105/joss.03262. URL: https://doi.org/10.21105/joss.03262.331

[14] Mark Hedges,Adil Hasan, and Tobias Blanke. “Management and Preservation of Research332

Data with IRODS”. In: Proceedings of the ACM First Workshop on CyberInfrastructure:333

Information Management in EScience. CIMS ’07. Lisbon, Portugal: Association for334

Computing Machinery, 2007, pp. 17–22. ISBN: 9781595938312. DOI: 10.1145/13173335

53.1317358. URL: https://doi.org/10.1145/1317353.1317358.336

[15] jedbrown/git-fat: Simple way to handle fat files without committing them to git, supports337

synchronization using rsync. 2022. URL: https://github.com/jedbrown/git-fat338

(visited on 11/15/2022).339

[16] Anna-Lena Lamprecht et al. “Towards FAIR principles for research software”. In: Data340

Science 3.1 (2020), pp. 37–59. ISSN: 24518484. DOI: 10.3233/DS-190026. URL:341

https://content.iospress.com/articles/data-science/ds190026.342

ing.grid, 2023 12

https://subversion.apache.org/
https://doi.org/10.21105/joss.00146
https://doi.org/10.21105/joss.00146
https://doi.org/10.21105/joss.00146
https://doi.org/10.21105/joss.00146
https://dvc.org/
https://pypi.org/project/pip/
https://git-scm.com/
https://git-lfs.github.com/
https://git-annex.branchable.com/
https://github.com/PyCQA/flake8
https://github.com/PyCQA/flake8
https://github.com/PyCQA/flake8
https://github.com/PyCQA/pylint
https://github.com/PyCQA/pylint
https://github.com/PyCQA/pylint
https://docs.gitlab.com/ee/ci/
https://docs.gitlab.com/ee/user/project/pages/
https://docs.gitlab.com/ee/user/project/pages/
https://docs.gitlab.com/ee/user/project/pages/
https://git.rwth-aachen.de/plotid/plotid_python
https://git.rwth-aachen.de/plotid/plotid_python
https://git.rwth-aachen.de/plotid/plotid_python
https://doi.org/10.21105/joss.03262
https://doi.org/10.21105/joss.03262
https://doi.org/10.1145/1317353.1317358
https://doi.org/10.1145/1317353.1317358
https://doi.org/10.1145/1317353.1317358
https://doi.org/10.1145/1317353.1317358
https://github.com/jedbrown/git-fat
https://doi.org/10.3233/DS-190026
https://content.iospress.com/articles/data-science/ds190026

RESEARCH ARTICLE plotID

[17] Matplotlib - Visualizations with python. 2022. URL: https : / / matplotlib . org/343

(visited on 10/10/2022).344

[18] PEP 257 – Docstring Conventions | peps.python.org. 2022. URL: https://peps.pyth345

on.org/pep-0257/ (visited on 08/29/2022).346

[19] PEP 8 – Style Guide for Python Code | peps.python.org. 2022. URL: https://peps.py347

thon.org/pep-0008/ (visited on 10/11/2022).348

[20] Tom Preston-Werner. Semantic Versioning 2.0.0. 2023. URL: https://semver.org/349

(visited on 03/08/2023).350

[21] Project Jupyter | Home. 2022. URL: https://jupyter.org/ (visited on 11/15/2022).351

[22] PyPI. PyPI · The Python Package Index. 2022. URL: https://pypi.org/ (visited on352

08/19/2022).353

[23] O. Rodeh andA. Teperman. “zFS - a scalable distributed file system using object disks”. In:354

20th IEEE/11th NASA Goddard Conference on Mass Storage Systems and Technologies,355

2003. (MSST 2003). Proceedings. 2003, pp. 207–218. DOI: 10.1109/MASS.2003.1194356

858.357

[24] RSpace ELN & Inventory. 2022. URL: https://www.researchspace.com/ (visited358

on 11/15/2022).359

[25] rsync. 2022. URL: https://rsync.samba.org/ (visited on 11/15/2022).360

[26] signac - simple data management - signac. 2022. URL: https://signac.io/ (visited361

on 11/15/2022).362

[27] TIOBE Index - TIOBE. 2023. URL: https://www.tiobe.com/tiobe-index/ (visited363

on 02/24/2023).364

[28] unittest — Unit testing framework — Python 3.10.6 documentation. 2022. URL: https:365

//docs.python.org/3/library/unittest.html (visited on 08/29/2022).366

[29] Visualizing Plots | Data Version Control - DVC. 2022. URL: https://dvc.org/doc/u367

ser-guide/experiment-management/visualizing-plots (visited on 11/15/2022).368

[30] Welcome — Sphinx documentation. 2022. URL: https://www.sphinx-doc.org/en/m369

aster/ (visited on 08/29/2022).370

[31] Welcome to PlotID’s documentation! — plotID 0.2.3 documentation. 2022. URL: https:371

//plotid.pages.rwth-aachen.de/plotid_python/ (visited on 12/21/2022).372

[32] Mark D. Wilkinson et al. “The FAIR Guiding Principles for scientific data management373

and stewardship”. In: Scientific Data 3.1 (2016), p. 160018. ISSN: 2052-4463. DOI:374

10.1038/sdata.2016.18.375

ing.grid, 2023 13

https://matplotlib.org/
https://peps.python.org/pep-0257/
https://peps.python.org/pep-0257/
https://peps.python.org/pep-0257/
https://peps.python.org/pep-0008/
https://peps.python.org/pep-0008/
https://peps.python.org/pep-0008/
https://semver.org/
https://jupyter.org/
https://pypi.org/
https://doi.org/10.1109/MASS.2003.1194858
https://doi.org/10.1109/MASS.2003.1194858
https://doi.org/10.1109/MASS.2003.1194858
https://www.researchspace.com/
https://rsync.samba.org/
https://signac.io/
https://www.tiobe.com/tiobe-index/
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html
https://dvc.org/doc/user-guide/experiment-management/visualizing-plots
https://dvc.org/doc/user-guide/experiment-management/visualizing-plots
https://dvc.org/doc/user-guide/experiment-management/visualizing-plots
https://www.sphinx-doc.org/en/master/
https://www.sphinx-doc.org/en/master/
https://www.sphinx-doc.org/en/master/
https://plotid.pages.rwth-aachen.de/plotid_python/
https://plotid.pages.rwth-aachen.de/plotid_python/
https://plotid.pages.rwth-aachen.de/plotid_python/
https://doi.org/10.1038/sdata.2016.18

	Statement of need
	Methodology
	Python – Implementation
	Core functions
	tagplot()
	ID
	Tagging
	Arguments

	publish()
	Script
	Data files
	Arguments

	Example script
	Distribution
	Source Code
	Python Package

	Ensuring good software quality
	Unit tests
	Documentation

	Conclusion
	Acknowledgements
	Roles and contributions

