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Abstract. The present work introduces HOMER (HPMC tool for Ontology-based Metadata

Extraction andRe-use), a python-writtenmetadata crawler that allows to automatically retrieve

relevant research metadata from script-based workflows on HPC systems. The tool offers a

flexible approach to metadata collection, as the metadata scheme can be read out from an

ontology file. Through minimal user input, the crawler can be adapted to the user’s needs

and easily implemented within the workflow, enabling to retrieve relevant metadata. The

obtained information can be further automatically post-processed. For example, strings may

be trimmed by regular expressions or numerical values may be averaged. Currently, data can

be collected from text-files and HDF5 files, as well as directly hardcoded by the user. However,

the tool has been designed in a modular way, so that it allows straightforward extension of the

supported file-types, the instruction processing routines and the post-processing operations.

1 Introduction1

Nowadays, scientists are called to handle large amount of generated data, store them in repositories2

and distribute them among other scientists or the scientific community, something that makes3

it hard for them to keep track of them over time and space. This can lead to the generation of4

so-called Dark Data [1], [2], a large quantity of forgotten and unused data. Here comes Research5

Data Management to provide an efficient solution to these problems. From the beginning of a6

project, the scientist should have a data-management plan on how the data will be organized,7

where they will be stored safely and who should be able to access the data and re-use them.8
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In fact, accompanying the complete data-generation process with a proper data-management plan9

will have two benefits. On one side, it will be easier to reproduce old research works for future10

scientists. On the other side, well-documented data will enable effective secondary research.11

For that reason, the German Federal Government funded NFDI (National Research Data Infras-12

tructure), to establish an infrastructure on research-data management, providing an environment13

where scientists can develop solutions to research questions and make their findings and innova-14

tions sustainable by implementing the FAIR data principles: Findable, Accessible, Interoperable,15

and Re-usable. NFDI4Ing [3], one of the consortia funded by the NFDI-initiative, brings together16

the engineering communities to develop, standardise and provide methods and services to make17

engineering research data FAIR.18

An ontology defines a common vocabulary and describes the syntactic as well as the semantic19

interoperability, including machine-interpretable definitions of basic concepts in the domain20

and the relations among them. The NFDI4Ing consortium has developed an ontology as a21

common classification of engineering data in a taxonomic hierarchy with standardized vocabulary22

and procedures. Metadata4Ing [4] aims at providing a thorough framework for the semantic23

description of research data, with a particular focus on engineering sciences and neighboring24

disciplines. This ontology allows a thorough description of the whole data-generation process25

(experiment, observation, simulation), embracing the object of investigation, all sample and26

data manipulation procedures, a summary of the data files and the information contained, and27

all personal and institutional roles. Within the NFDI4Ing framework, the role of archetype28

DORIS is twofold: on one side, to create a HPMC-(sub)ontology based on Metadata4Ing in29

order to establish a consistent terminology for CFD workflows in HPC systems (HPMC = High30

Performance Measurement and Computing); on the other side, to develop a metadata crawler,31

presented in this work, for metadata extraction. The crawler named HOMER (HPMC tool for32

Ontology-basedMetadata Extraction and Re-use) is intended as a Research-Data Management33

tool to automate the retrieval of metadata and is designed to be used in script-based HPMC34

applications.35

In the field of Research-Data Management, many solutions and tools for metadata extraction36

have been proposed in the recent years. While all of them share with HOMER the same core37

concept of automating metadata extraction on HPC systems, they implement different approaches38

and solutions to the problem, introducing a great variety of capabilities.39

For example, the RDM system at the University of Huddersfield, iCurate [5], provides a tailored40

solution to HPMC data with the functionalities of metadata retrieval, departmental archiving,41

workflow management system and metadata validation and self inferencing. This last functional-42

ity requires the metadata to be mapped onto a suitable ontology. iCurate offers support for all43

aspects of data management, but the actual extraction of metadata is limited to the annotations44

made by the user in a HPC job file. While this guarantees a non-intrusive integration within the45

workflow, it doesn’t allow the user to retrieve metadata from output files.46

Another tool for research-data management is represented by signac [6]. This is a lightweight47

framework providing all the components to create a searchable and shareable dataspace. The core48

application is a semi-structured database that allows storing the original files on the file system49

along with the associated metadata, which is created on-the-fly and saved in human-readable50
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format. The tool also allows for workflow management thanks to the signac-flow application.51

The framework is implemented in python and is designed to be used in HPC systems. However, in52

order to perform the metadata annotation, signac requires the user to wrap the original simulation53

code into a script.54

The extraction of metadata from output files is possible with Xtract [7], [8]. In general, this55

powerful serverless middleware provides an effective, flexible and scalable way to retrieve56

metadata, both centrally and at the edge, from very large data lakes. The service implements57

several different extractors (written in python or bash), which are run dynamically according58

to the type of file that needs to be crawled. This allows to handle a vast quantity of different59

data formats typically employed in scientific applications. Machine learning is used to infer60

the type of file to be crawled, so as to choose the best extractor(s) for that file in the shortest61

time possible. Finally, the tool is highly portable as it is wrapped in a docker container and can62

be linked to Globus. Xtract is a powerful service, which is however more suited to data lakes,63

rather than to be applied within a workflow. Moreover, the information that can be retrieved is64

somewhat limited and not entirely customizable by the user.65

From this point of view, more freedom is given by ExtractIng [9], a generic automated metadata-66

extraction toolkit. Again suited for HPC systems, ExtractIng is a Java-written standalone tool67

that needs to be run once simulation outputs have been produced. It is easy to integrate within a68

workflow and offers both native and parallel implementation of the parsing algorithm, which69

makes the code scalable for HPC applications. The metadata extraction is based on the metadata70

scheme provided by EngMeta [10]. The tool is code-independent, in the sense that an external71

configuration file allows to adapt the metadata extraction to the specific simulation code and72

computational environment. While this provides a generic extraction tool, the configuration file73

needs to be manually written and adapted by the user (even though it only needs to be done once74

per code).75

Another solution is represented by Brown Dog [11], which consists of two services called DAP76

and DTS. The first provides file conversion, while the second performs extraction and analysis77

of metadata. Brown Dog aims at leveraging already existing software, libraries and services in78

order to provide an automated aid in RDM. The implementation of an elasticity module provides79

for an optimized auto-scale of the two services based on the system demand. Moreover, a tool80

catalog points the user to the most suitable option for file conversion and metadata extraction.81

The extracted metadata is returned as a JSON file. However, this operation is performed by82

passing the data to the web-based service Clowder. This particular aspect might pose some83

limitations in the use of Brown Dog.84

Some of the services that provide metadata extraction might be domain specific. For example,85

ScienceSearch [12] is a generalized and scalable search infrastructure, which employs machine86

learning to capture metadata. Information is retrieved not only from regular data, but also from87

the context and the surroundings artifacts (proposals, publications, file system structures and88

images) of the data, allowing for an enrichment of the extracted metadata. The service provides89

a web interface, where users can submit their text queries, and also provides the possibility90

for the users to give feedback on the collected metadata, so as to improve the search quality.91

However, the data model is unique to the NCEM dataset, which includes data relevant to the92
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field of electron microscopy.93

Within the NFDI environment, Swate [13] is an Excel add-in for the annotation of experimental94

data and computational workflows developed by the consortium NFDI4Plants. The tool is95

intended for metadata annotation based on the ontology provided by the user. The use of a96

spreadsheet environment aims at providing an intuitive and low-friction workflow, principally97

focusing on wet-lab applications, where the user can annotate work-relevant metadata as the98

experiment is performed. Hence, in this tool, the work is done manually by the user.99

A second tool within the NFDI infrastructure is presented in this paper. Developed within the100

NFDI4Ing consortium at the Technical University of Munich (TUM), HOMER is a metadata101

crawler to be integrated in script-based (HPMC) workflows aiming at retrieving metadata that102

can be attached to the raw data published by researchers. The tool is designed to be flexible and103

adjustable to the user’s needs in its application and easy to implement in potentially any HPMC104

workflow. Moreover, it has been written with a modular structure, so it can easily be developed105

further. The automated metadata extraction is based on the ontology schemes provided by the106

user and is highly customizable.107

The code structure is described in section 2, while a simple application is described in section 3.108

Finally, in section 4, an overview on the future steps in the code development is given.109

2 Code Description110

2.1 Characteristics111

HOMER is a code written in python and, at the moment, its complete extraction workflow112

consists of 5 steps, as shown in figure 1. The code has been developed as a collection of routines,113

each performing a different action, rather than as a single script. This guarantees a flexible114

application of the crawler, as the user doesn’t have always to perform all the steps described in the115

next subsection, especially once the initial setup of the workflow has been done for the first time.116

The modularity of the code also allows the developers and the users to easily modify/expand the117

capabilities of the crawler, so that the code can be tailored for specific applications, if needed.118

HOMER can be employed both locally and on HPC systems. However, it should be noted that,119

as of now, it does not support a parallel implementation to parse the target files. Conceived as a120

tool to be integrated in script-based workflows, the crawler should be run after the simulation121

(or, potentially, any processing step), similarly to ExtractIng. Hence, the metadata is naturally122

extracted in edge mode (where the data are generated). However, the tool can also be used to123

retrieve metadata from centrally-stored, previously collected data, similarly to Xtract. In this124

case, though, the user has to perform some extra steps according to the specific case at hand (see125

next subsection). Together with metadata extraction, the tool gives the user the opportunity to126

perform some simple post-processing operations as well, such as trimming strings or calculating127

the minimum, maximum or mean of a series of values.128

2.2 Implementation129

When running the code for the first time, the following five steps (figure 1) are needed, with two130

of them requiring direct user input. A step-by-step example is shown in section 3.131
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Figure 1: The five steps the crawler is currently composed of and related input/output files.

The first step consists of reading out the ontology file and creating an empty dictionary containing132

the flat classes as specified in the ontology. The step is performed by the routine ClassUtils.py133

and takes advantage of the python package Owlready2 to work on the ontology. The empty134

dictionary is a list of the classes and their attributes as they appear in the ontology file. The135

dictionary is a sort of template, where the general classes are simply listed and no specific136

instance of a class is created. The file, however, contains the fields that allow the user to specify137

how many instances (and related properties) of each class are to be created.138

The second step has to be performed manually and serves the purpose of preparing the dictionary139

file to be used by the multiplexer. The user needs to specify how many instances of each class140

need to be retrieved. This is done by giving a numerical value to the keyword __count__ in141

the corresponding class. Similarly, the user can specify how many properties each instance of a142

class needs to have by indicating the numerical value in the corresponding property list.143

The third step consists in the ”Multiplexer” and is performed by the routine Multiplexer.py.144

The output is the original flat-class dictionary which has been now expanded according to the145

needs of the user, so that now the file contains a list of all the needed instances for each class146

and all the properties for each instance of a class.147

The fourth step again has to be performed manually. The user has to fill in the multiplexed148

dictionary by specifying, for each instance and property, where the crawler should look for149

the data and how it should retrieve them. This information is to be provided by specifying the150

three keywords "path", "type" and "pattern". The filled expanded dictionary works as a151

configuration file for the final step.152

The fifth and last step consists in the actual extraction of the metadata and is performed through153

the routine EntityUtils.py. Once the metadata has been extracted, it is printed out to a file154

in a structured human-readable format (JSON or YAML). Currently, metadata can be extracted155

from files, such as text files using regular expressions or HDF5 files using h5py, from the output156

of a operating-system command, or can be directly hardcoded, if needed.157

As mentioned, the user must first adapt the crawler to the specific simulation code in use158

(type and amount of metadata available to be extracted, location and format of the target files,159

extraction methods...). This involves the two (lengthy) manual steps just described. However,160

once completed, the configuration file (step four) can be re-used with little to no modification161

every time the simulation code is run again. Specifically, simply step five needs to be performed162

in the subsequent runs. This allows for a seamless integration of the tool within the workflow.163
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3 Example Application164

In this section, a simple usage of the tool is shown. HOMER is intended to be used, potentially,165

for any script-based HPMC application. For example in the field of computational fluid dynamics166

(CFD), it could be used to extract the initial conditions of a simulation from the input file(s),167

some relevant flow-field quantities from the output file(s) of the CFD code and information on168

the specific hardware used to perform the calculation provided by the HPC system. Taking the169

case of an airplane’s wing simulation as an example, the user could be interested in retrieving170

the freestream pressure and temperature, the Reynolds number, the drag coefficient of the wing171

and the ID-number of the node(s) where the calculation was performed. All the extracted pieces172

of information are to be classified according to the specific metadata scheme chosen by the user.173

For example, using the Metadata4Ing scheme, for the simulation step the user can define the174

class "Processing_Step", give it a name (such as ”Running simulation”) and store all the175

relevant parameters (pressure, temperature, Reynolds, and so on) with their values and units of176

measures as properties of the main class. If a different ontology scheme is used, the classification177

of the extracted metadata will be of course different, just like different metadata will need to be178

extracted if the crawler is employed in a different research field, such as structural mechanics or179

particle physics.180

Hence, in order to show the working principles of HOMER in a simple, clear and application-181

independent way, the crawler is applied to extract metadata from a pizzeria menu using a182

showcase ontology. This simplified, limited example helps in laying out the steps described in183

subsection 2.2. A brief outlook of how the code could be employed in a real CFD workflow is184

given at the end of this section.185

3.1 Showcase Pizza Ontology186

This application is based on a simple ”Pizza ontology”. All the files referenced hereafter can187

be found in the directory /SimpleApplication_PizzaOntology on the GitLab repository of188

the code. Assume the following scenario: three persons always have lunch at the same pizzeria189

from Monday to Saturday and always choose the same pizza each. One goes for the first special190

pizza in the menu, the second always goes for the second special, while the third one always191

chooses the first option listed in the White-Pizzas1 section of the daily menu. The menus vary192

during the week, so that every day each person has a different pizza compared to the previous193

day. In this example, HOMER is used to retrieve from the daily menu two pieces of information194

for each person: the price ("Price") and the name of the pizza ("Has_main_topping").195

To draw a comparison with the extraction of metadata for a HPMC application using the Meta-196

data4Ing scheme, each person represents a processing step and the two properties name and price197

exemplify a computational variable and its unit of measure, respectively.198

The information to be retrieved is stored in text files, as shown below, and metadata are extracted199

using regular expressions.200

1 ******-- White Pizzas --******201

2 White First choice: Monterosa202

1. A ”white” pizza does not contain tomato sauce, as opposed to a ”red” one
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3 White First choice price: 7.5203

4 ...204

5 *****-- Special Pizzas --*****205

6 Special First choice: Carbonara206

7 Special First choice price: 7.5207

8 ...208

9 Special Second choice: Vegana209

10 Special Second choice price: 7210

11 ...211

After setting up the (optional) python virtual environment and having installed the crawler, the212

first command to run is ClassUtils.py, which retrieves the ontology and creates a dictionary213

in the form of a .json file as shown here.214

1 {215

2 ...216

3 "Vegetarian Pizza": {217

4 "__count__": 1,218

5 "__is_subclass_of__": ["Pizza"],219

6 "__restrictions__": ["ontology.main_topping_of.exactly(1,220

owl.Thing)"],221

7 "Price": [1],222

8 "Has_main_topping": [1],223

9 "Has_topping": [1]224

10 },225

11 ...226

12 }227

The empty dictionary has to be manually adjusted to the specific case by the user. In this exam-228

ple, the classes have been trimmed, so that the "Special Pizza" class will be repeated twice229

(”__count__”: 2) and each of the two instances will have one "Price" and one ”Has_main_top-230

ping” attributes ([1,1]). The result of the manual file manipulation for the "Special Pizza"231

class is shown below. Only one instance of the "White Pizza" class is needed, instead, so the232

keyword to use is ”__count__”: 1.233

1 {234

2 ...235

3 "Special Pizza": {236

4 "__count__": 2,237

5 "__is_subclass_of__": ["Pizza"],238

6 "__restrictions__": ["ontology.main_topping_of.exactly(1,239

owl.Thing)"],240

7 "Price": [1,1],241

8 "Has_main_topping": [1,1]242

9 },243

10 ...244
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11 }245

Running Multiplexer.py expands the classes according to the parameters indicated in the246

previous step. The output is shown below. The new empty dictionary containing all the instances247

and corresponding attributes the crawler will use in the creation of the metadata file.248

1 {249

2 "Special Pizza_1": {250

3 "__restrictions__": ["ontology.main_topping_of.exactly(1, owl.251

Thing)"],252

4 "Price": {253

5 "path": [""],254

6 "type": [""],255

7 "pattern": [""],256

8 "postprocessor": [{257

9 "type": "",258

10 "args": ""259

11 }]260

12 },261

13 "Has_main_topping": {262

14 "path": [""],263

15 "type": [""],264

16 "pattern": [""],265

17 "postprocessor": [{266

18 "type": "",267

19 "args": ""268

20 }]269

21 }270

22 },271

23 {272

24 "Special Pizza_2": {273

25 ...274

26 },275

27 ...276

The multiplexed dictionary has to be filled in manually again by the user, as shown below.277

How to fill in the dictionary depends on how the user wants to retrieve the data and where the278

information is stored. In this example, data are all extracted from plain text files and the crawler279

uses regular expressions to locate and read the data. This is done by specifying the keywords:280

"path", "type" and "pattern". The entries in "postprocessor" can be left empty for the281

sake of this example. The complete keywords for "Special Pizza_1" are shown here.282

1 {283

2 "Special Pizza_1": {284

3 "__restrictions__": "ontology.main_topping_of.exactly(1, owl.285

Thing)",286
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4 "Price": {287

5 "path": "PizzaExample/Menus/RandomMenu_1.txt",288

6 "type": "regex",289

7 "pattern": "Special First choice price:\\s(.*)\\n",290

8 "postprocessor": {291

9 "type": "",292

10 "args": ""293

11 }294

12 },295

13 "Has_main_topping": {296

14 "path": "PizzaExample/Menus/RandomMenu_1.txt",297

15 "type": "regex",298

16 "pattern": "Special First choice:\\s(.*)\\n",299

17 "postprocessor": {300

18 "type": "",301

19 "args": ""302

20 }303

21 }304

22 },305

23 ...306

24 }307

Finally, EntityUtils.py is used to run the actual extraction routine, which retrieves the meta-308

data according to the parameters specified in the previous step. The output file is shown below309

and could be either a .json or a .yaml file.310

1 {311

2 "Special Pizza_1": {312

3 "Price": "7.5",313

4 "Has_main_topping": "Carbonara"314

5 },315

6 "Special Pizza_2": {316

7 "Price": "7",317

8 "Has_main_topping": "Vegana"318

9 },319

10 "White Pizza": {320

11 "Price": "7.5",321

12 "Has_main_topping": "Monterosa"322

13 }323

14 }324

At this point, the menu for Monday (RandomMenu_1.txt) has been crawled. The next steps325

depend on the intended use for the crawler by the user, showing again the flexibility of the tool.326

In this example, all data files to be crawled have already been generated (menus from 1 to 6).327

Therefore, the crawler can be used in centralized mode. This means that, using a script (for328
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example CyclingRandomMenus.sh provided in the folder), it is possible to easily automate the329

metadata extraction by simply adapting the filled multiplexed dictionary from step 4 (that means330

changing ../RandomMenu_1.txt to ../RandomMenu_N.txt, with suitable N, in "path") and331

re-run step 5.332

The other option would be to integrate the crawler within the workflow right after the data files333

are generated (for example, once a generic RandomMenu.txt has been created) and use the tool334

in edge mode. In such a case, the filled multiplexed dictionary wouldn’t need any modification,335

so that simply the command for step 5 would have to be invoked.336

3.2 Simple CFD-like Application337

Within a script-based workflow, the natural use of the crawler would be the edge mode. The first338

usage requires, as mentioned, to perform all the five steps. After that, HOMER can be seamlessly339

integrated in the workflow without further modifications. The snippet below shows a short340

example of metadata extracted from a simulation input and output files for the code NSMB [14]341

and classified according to the Metadata4Ing ontology. In this scheme, the reference classes are342

"Processing_Step", "Tool" and "Method", with information such as parameters name and343

numerical value being considered as properties of those classes. Some entries have been hard-344

coded by providing a full string (using "type": "string" and "pattern": "<string>"),345

others have been extracted from command-line outputs (using "type": "os" and "pattern":346

"<command>"), while others are extracted from the text files as previously shown.347

1 {348

2 "Processing_Step": {349

3 "Name": "Running Simulation",350

4 "Parameter_1": "Freestream Mach number",351

5 "Parameter_2": "Freestream pressure",352

6 "Parameter_3": "Freestream temperature",353

7 "Parameter_4": "Freestream unit Reynolds number",354

8 "Parameter_5": "Start time",355

9 "Has_numerical_value_1": "9.1",356

10 "Has_numerical_value_2": "730",357

11 "Has_numerical_value_3": "160",358

12 "Has_numerical_value_4": "3.22E6",359

13 "Has_numerical_value_5": "10:13:31"360

14 },361

15 "Tool_1": {362

16 "Type": "Hardware",363

17 "Name": "lrz-coolmuc2-linux-cluster-2022"364

18 "Computational node": "i22r07c05s05"365

19 },366

20 "Tool_2": {367

21 "Type": "Software",368

22 "Name": "NSMB",369

23 "Version": " 6.09.21 Date: 28 - January - 2021 "370
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24 },371

25 "Method": {372

26 "Name": "LU-SGS"373

27 }374

28 }375

4 Conclusion and Future Developments376

In this work, HOMER (HPMC tool for Ontology-basedMetadata Extraction and Re-use), a tool377

to automate metadata extraction in script-based workflows, has been presented. The crawler, a378

python-written code, allows for a flexible approach to metadata retrieval: the user can provide379

an ontology file, whose metadata scheme represents the backbone of the extracted information.380

The classes and attributes from the ontology can be tailored to the user’s case and expanded by381

means of the multiplexer. Once the user has filled in the final dictionary, the actual metadata382

extraction is executed. This can happen both in edge mode (natural application for script-based383

workflows) or, with some further user input, in centralized mode. The extracted metadata can384

then be further post-processed by some routines included in the code. The use of the tool requires385

some user input and tuning for the first application, but after that, it can be seamlessly integrated386

in potentially any workflow.387

Currently, metadata can be retrieved from text and HDF5 files, from outputs of console commands388

or can be directly hardcoded in the configuration file. This limitation can be easily overcome389

in the future, as the code is design in a modular way, thus allowing for a simple integration of390

new building blocks. According to the user’s needs, new readers/writers of other file formats391

can be added. The same applies for the post-processing capabilities on the extracted metadata.392

Moreover, work to increase the amount of readable file formats is planned, at first focusing on393

the most common formats in CFD applications.394

As of now, HOMER can be already implemented in HPMC workflows, so as to enrich each395

processing step (e.g. mesh generation, simulation, post-processing, report) by adding the corre-396

sponding metadata. This capability allows for the collection of valuable data (such as the energy397

consumption for a set of simulations) to enable secondary research and the development of new398

methodologies in HPC systems. In the current state, the tool would provide the best performance399

when used to extract metadata at the edge, as no parallel implementation for file parsing is400

present, yet. In its five-steps implementation described in this work, HOMER has mainly been401

utilized in the data life cycle (figure 2) for the processing stages of planning, creating/collecting402

and processing/analyzing. A future step would be to cover the complete data life cycle in a403

holistic approach, by providing the possibility to automatically preserve and publish/share the404

extracted metadata along with the research dataset.405

Through publishing not just the data but also administrative (preservation) metadata, third406

party users will be able to retrieve crucial information about accessibility, access rights and407

licenses among others. Bibliographic (author, identifiers) and descriptive (research domain,408

tools, methods, processing steps) metadata can be published in repositories together with the409

referenced research data, or be linked to the research data by persistent links and identifiers, if410
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Figure 2: Data Life Cycle [15].

technical or organizational reasons impede a joint provisioning (e.g. if the research data is too411

large to be stored in a common repository).412

One main factor of making data FAIR is a controlled vocabulary / common terminology. This413

is guaranteed by the fact that HOMER supports the usage of semantic ontologies as metadata414

schemes. These schemes have to be matched somehow with searchable metadata fields in the415

corresponding repositories. Only few repositories offer such publishing options, like DaRUS416

(University of Stuttgart) [16], which uses predefined metadata blocks, or Coscine (RWTH)417

[17], which provides the possibility to use standardized or self-created metadata application418

profiles [18]. These schemes still have to be parsed with the corresponding metadata fields in419

the extracted metadata file, to provide the metadata in a standardized, searchable and indexable420

front end. The NFDI4Ing consortium is simultaneously working on a generic interface which421

combines different kinds of metadata and data repositories with one standard-based interface.422

This enables the linking between all data and metadata of the research data life cycle, including423

experiments, raw data, software, subject-specific metadata sets, and the tracking of usage and424

citations. Standardized and automatically extracted metadata files can easily be made findable425

and accessible by this new generic interface [19]. Therefore, HOMER can be a crucial piece426

within the metadata toolchain from using common vocabularies and automatized extracting to427

FAIR publishing. The already mentioned Metadata4Ing ontology has been used as the reference428

during the early stages of the development of HOMER. In the meantime, a HPMC-sub-ontology429

has been developed within Metadat4Ing. Hence, one of the next steps will be to further adapt430

HOMER to this new sub-ontology, allowing the tool to be more effective in the complete data431

life cycle of a CFD workflow on HPC systems.432
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