
�

Date Received:

2023-01-20

Licenses:

This article is licensed under: cb

Keywords:

Metadata extraction, HPMC,

Ontology, Research Data

Management

Data availability:

Data can be found here: https:

//gitlab.lrz.de/nfdi4ing/c

rawler/-/tree/master/Simple

Application_PizzaOntology

Software availability:

Software can be found here:

doi:10.14459/2022mp1694401

RESEARCH ARTICLE

preprints
From Ontology to Metadata: A Crawler for Script-based

Workflows

HOMER: a tool for extraction and re-use of ontology-based metadata in

high-performance measurement and computing workflows

Giuseppe Chiapparino�
1

Benjamin Farnbacher�
1

Nils Hoppe�
1

Radoslav Ralev�
2

Vasiliki Sdralia�
3

Christian Stemmer�
1

1. TUM School of Engineering and Design; Department of Engineering Physics and Computation; Chair of

Aerodynamics and Fluid Mechanics, Technical University of Munich, Garching; Germany.

2. TUM School of Computation, Information and Technology; Department of Informatics, Technical University of

Munich, Garching; Germany.

3. TUM School of Engineering and Design; Department of Engineering Physics and Computation; Chair of

Aerodynamics and Fluid Mechanics; Munich Data Science Institute (MDSI), Technical University of Munich,

Garching; Germany.

Abstract. The present work introduces HOMER (High Performance Measurement and

Computing tool for Ontology-based Metadata Extraction and Re-use), a python-written

metadata crawler that allows to automatically retrieve relevant research metadata from

script-based workflows on HPC systems. The tool offers a flexible approach to metadata

collection, as the metadata scheme can be read out from an ontology file. Through minimal

user input, the crawler can be adapted to the user’s needs and easily implemented within the

workflow, enabling to retrieve relevant metadata. The obtained information can be further

automatically post-processed. For example, strings may be trimmed by regular expressions

or numerical values may be averaged. Currently, data can be collected from text-files and

HDF5 files, as well as directly hardcoded by the user. However, the tool has been designed

in a modular way, so that it allows straightforward extension of the supported file-types, the

instruction processing routines and the post-processing operations.

1 Introduction1

Nowadays, scientists are called to handle large amount of generated data, store them in repositories2

and distribute them among other scientists or the scientific community, something that makes it3

hard for them to keep track of all the relevant information over time and space. This can lead to4

the generation of a large quantity of forgotten and unused data, the so-called Dark Data [1], [2].5

Although every researcher implements some sort of Research Data Management (RDM), either6

consciously or unconsciously, to avoid the loss of precious information, standardized RDM7

1

https://gitlab.lrz.de/nfdi4ing/crawler/-/tree/master/SimpleApplication_PizzaOntology
https://gitlab.lrz.de/nfdi4ing/crawler/-/tree/master/SimpleApplication_PizzaOntology
https://gitlab.lrz.de/nfdi4ing/crawler/-/tree/master/SimpleApplication_PizzaOntology
https://gitlab.lrz.de/nfdi4ing/crawler/-/tree/master/SimpleApplication_PizzaOntology
doi:10.14459/2022mp1694401
https://orcid.org/0000-0001-8623-1464
https://orcid.org/0000-0002-1489-6501
https://orcid.org/0000-0003-0580-9717
https://orcid.org/0000-0002-4583-7969
https://orcid.org/0000-0002-7213-5110
https://orcid.org/0000-0002-6904-8315
Giuseppe


Giuseppe


Giuseppe




RESEARCH ARTICLE HOMER: a metadata crawler for script-based workflows

approaches, such as the FAIR data principles (Findable,Accessible, Interoperable, and Re-usable),8

have been proposed in order to provide a more structured and potentially efficient solution to9

these problems. From the beginning of a project, the scientist should have a data-management10

plan on how the data will be organized, where they will be stored safely and who should be able11

to access the data and re-use them. In fact, accompanying the complete data-generation process12

with a proper data-management plan will have two benefits. On one side, it will be easier to13

reproduce old research works for future scientists. On the other side, well-documented data will14

enable effective secondary research.15

For that reason, the German Federal Government funded NFDI (Nationale Forschungsdaten-16

infrastruktur [National Research Data Infrastructure]), to establish an infrastructure on RDM,17

providing an environment where scientists can develop solutions to research questions and make18

their findings and innovations sustainable by implementing the FAIR data principles. NFDI4Ing19

(NFDI für die Ingenieurwissenschaften [NFDI for Engineering] [3]), one of the consortia funded20

by the NFDI initiative, brings together the engineering communities to develop, standardise and21

provide methods and services to make engineering research data FAIR.22

One major factor of making data FAIR is the implementation of a controlled vocabulary with com-23

mon terminology. The use of a controlled vocabulary is essential for findability, interoperability,24

and consequently, the re-use and the establishment of new user models. Most of the research25

data in the HPMC domain is neither documented nor are metadata sets available, as common26

terminologies for HPMC in the engineering sector still need to be developed and established27

within the community. HOMER allows to automatically retrieve relevant research metadata28

from script-based workflows on HPC systems and therefore supports researchers to collect29

and publish their research data within a controlled vocabulary using a standardized workflow.30

Controlled vocabularies, and the relations and restrictions between their terms, are practically31

implemented through the use of ontologies. An ontology defines a shared conceptualization32

of a common vocabulary, semantic relations of data and the syntactic as well as the semantic33

interoperability, including machine-interpretable definitions of basic concepts in the domain and34

the relations among them. The NFDI4Ing consortium has developed an ontology as a common35

classification of engineering data in a taxonomic hierarchy with standardized vocabulary and pro-36

cedures. Metadata4Ing (Metadata for Engineering [4]) aims at providing a thorough framework37

for the semantic description of research data, with a particular focus on engineering sciences38

and neighboring disciplines. Metadata4Ing re-uses elements from the existing terminologies39

and ontologies, such as DCMI Metadata Terms [5]) or the PROV (Provenance Namespace)40

ontology [6]), whose terms were imported into Metadata4ing. This ontology allows a thorough41

description of the whole data-generation process (experiment, observation, simulation), covering42

aspects such as: the object of investigation, all sample and data manipulation procedures, a43

summary of the data files and the information contained, and all personal and institutional roles.44

The NFDI4Ing framework entails many working groups called “archetypes”. Among them, the45

role of archetype DORIS is twofold: on one side, to create a HPMC-(sub)ontology based on46

Metadata4Ing in order to establish a consistent terminology for computational fluid-dynamics47

(CFD) workflows in high performance computing (HPC) systems; on the other side, to develop a48

metadata crawler, presented in this work, for metadata extraction. The expansion to an HPC-sub-49

ontology is based on modularity and fits in the primary Metadata4Ing classes of method, tool,50

ing.grid, 2024 2

Giuseppe


Giuseppe


Giuseppe


Giuseppe


Giuseppe


Giuseppe


Giuseppe


Giuseppe


Giuseppe




RESEARCH ARTICLE HOMER: a metadata crawler for script-based workflows

object of research. The expansion includes suggestions of unambiguous terms for domain-related51

metadata expressed in classes, object properties (relations) and data properties. These classes52

have been developed in a community-based approach and represent common methods and tools53

for workflows in engineering research on HPMC systems. The crawler named HOMER (HPMC54

tool forOntology-basedMetadata Extraction and Re-use) is intended as a RDM tool to automate55

the retrieval of metadata and is designed to be used in script-based HPMC applications.56

In the field of RDM, many solutions and tools for metadata extraction have been proposed in57

the recent years. While all of them share with HOMER the same core concept of automating58

metadata extraction on HPC systems, they implement different approaches and solutions to the59

problem, introducing a great variety of capabilities.60

For example, the RDM system at the University of Huddersfield, iCurate [7], provides a tailored61

solution to HPMC data with the functionalities of metadata retrieval, departmental archiving,62

workflow management system and metadata validation and self inferencing. This last functional-63

ity requires the metadata to be mapped onto a suitable ontology. iCurate offers support for all64

aspects of data management, but the actual extraction of metadata is limited to the annotations65

made by the user in a HPC job file. While this guarantees a non-intrusive integration within the66

workflow, it doesn’t allow the user to retrieve metadata from output files.67

Another tool for research-data management is represented by signac [8]. This is a lightweight68

framework providing all the components to create a searchable and shareable dataspace (a69

decentralized infrastructure for data sharing and exchange based on commonly agreed principles70

[9]). The core application is a semi-structured database that allows storing the original files on71

the file system along with the associated metadata, which is created on-the-fly and saved in72

human-readable format. The tool also allows for workflowmanagement thanks to the signac-flow73

application. The framework is implemented in python and is designed to be used in HPC systems.74

However, in order to perform the metadata annotation, signac requires the user to wrap the75

original simulation code into a script.76

The extraction of metadata from output files is possible with Xtract [10], [11]. In general, this77

powerful serverless middleware provides an effective, flexible and scalable way to retrieve78

metadata from very large data lakes (centralized systems storing data in raw format [12]). With79

Xtract, metadata can be extracted both centrally (“central mode”, i.e. fetching the metadata80

all at once from the different repositories where the data are generated) and at the edge (“edge81

mode”, i.e. extracting and storing the metadata as soon as the data are created and at the location82

where they are generated). The service implements several different extractors (written in python83

or bash), which are run dynamically according to the type of file that needs to be crawled.84

This allows to handle a vast quantity of different data formats typically employed in scientific85

applications. Machine learning is used to infer the type of file to be crawled, so as to choose86

the best extractor(s) for that file in the shortest time possible. Finally, the tool is highly portable87

as it is wrapped in a docker container [13] and can be linked to Globus [14], [15]. Xtract is a88

powerful service, which is however more suited to data lakes, rather than to be applied within a89

workflow. Moreover, the information that can be retrieved is somewhat limited and not entirely90

customizable by the user.91

From this point of view, more freedom is given by ExtractIng [16], a generic automated metadata-92

ing.grid, 2024 3

Giuseppe


Giuseppe


Giuseppe


Giuseppe


Giuseppe




RESEARCH ARTICLE HOMER: a metadata crawler for script-based workflows

extraction toolkit. Again suited for HPC systems, ExtractIng is a Java-written standalone tool93

that needs to be run once simulation outputs have been produced. It is easy to integrate within a94

workflow and offers both native and parallel implementation of the parsing algorithm, which95

makes the code scalable for HPC applications. The metadata extraction is based on the metadata96

scheme provided by EngMeta [17]. The tool is code-independent, in the sense that an external97

configuration file allows to adapt the metadata extraction to the specific simulation code and98

computational environment. While this provides a generic extraction tool, the configuration file99

needs to be manually written and adapted by the user (even though it only needs to be done once100

per code).101

Another solution is represented by Brown Dog [18], which consists of two services called DAP102

and DTS. The first provides file conversion, while the second performs extraction and analysis103

of metadata. Brown Dog aims at leveraging already existing software, libraries and services in104

order to provide an automated aid in RDM. The implementation of an elasticity module provides105

for an optimized auto-scale of the two services based on the system demand. Moreover, a tool106

catalog points the user to the most suitable option for file conversion and metadata extraction.107

The extracted metadata is returned as a JSON file. However, this operation is performed by108

passing the data to the web-based service Clowder. This particular aspect might pose some109

limitations in the use of Brown Dog.110

Some of the services that provide metadata extraction might be domain specific. For example,111

ScienceSearch [19] is a generalized and scalable search infrastructure, which employs machine112

learning to capture metadata. Information is retrieved not only from regular data, but also from113

the context and the surroundings artifacts (proposals, publications, file system structures and114

images) of the data, allowing for an enrichment of the extracted metadata. The service provides115

a web interface, where users can submit their text queries, and also provides the possibility116

for the users to give feedback on the collected metadata, so as to improve the search quality.117

However, the data model is unique to the NCEM dataset, which includes data relevant to the118

field of electron microscopy.119

Within the NFDI environment, Swate [20] is an Excel add-in for the annotation of experimental120

data and computational workflows developed by the consortium NFDI4Plants. The tool is121

intended for metadata annotation based on the ontology provided by the user. The use of a122

spreadsheet environment aims at providing an intuitive and low-friction workflow, principally123

focusing on wet-lab applications, where the user can annotate work-relevant metadata as the124

experiment is performed. Hence, in this tool, the work is done manually by the user.125

A second tool within the NFDI infrastructure is presented in this paper. Developed within the126

NFDI4Ing consortium at the Technical University of Munich (TUM), HOMER is a metadata127

crawler to be integrated in script-based (HPMC) workflows aiming at retrieving metadata that128

can be attached to the raw data published by researchers. The tool is designed to be flexible and129

adjustable to the user’s needs in its application and easy to implement in potentially any HPMC130

workflow. This development approach tries to overcome all the shortcomings highlighted for131

the RDM solutions and tool reviewed in this section, and to allow HOMER to be suitable for132

a wide range of applications. In fact, the crawler can retrieve metadata from text and binary133

(HDF5) files, as well as from user’s annotations and terminal commands, at any stage of the134

ing.grid, 2024 4

Giuseppe




RESEARCH ARTICLE HOMER: a metadata crawler for script-based workflows

workflow without interfering with the other processes composing the workflow. The automated135

extraction of metadata can be performed both in edge as well as in central mode, making the136

tool suitable for extracting information also from central repositories (such as data lakes). The137

metadata extraction is based on the ontology schemes chosen by the users. However, the users138

do not need to strictly adhere to a fixed scheme, but can adjust and customize it according to139

their needs. Moreover, although developed primarily keeping engineering sciences as the main140

use application, HOMER can be employed to retrieve metadata from HPMC workflows applied141

to a wide variety of research fields. Finally, the tool has been written with a modular structure,142

so it can easily be developed further to include new features. Hence, HOMER is proposed as a143

flexible and consistent RDM tool that can be used in a wide variety of applications and fields144

with limited user inputs in order to easily promote the FAIR principles and enrich the data created145

by the user.146

The code structure is described in section 3, while a simple application is described in section 4.147

Finally, in section 5, an overview on the future steps in the code development is given.148

2 Characterization of the problem149

Many numerical applications, such as optimization problems or parametric studies, require the150

user to solve essentially the same problem with slightly different inputs each time. To make an151

example in the field of CFD, assume that it is necessary to assess the aerodynamic characteristics152

of an aircraft wing during different phases of the flight (take-off, climb, cruise and so on). Hence,153

the user will perform a certain number of simulations employing the same geometry of the154

wing while varying the freestream conditions (pressure, density, temperature, Reynolds number155

and so on) provided as input to the simulation. In such a case, especially when the number156

of simulations to be performed is large, automating the workflow (or parts of it) by means of157

script-based processes enables an efficient use of the available computing resources. For example,158

the user could create a script to change the freestream-input parameters as soon as a simulation159

ends so that the following one with new conditions would start immediately. Together with the160

data generation, the researcher should also aim at retrieving and storing the relevant metadata161

for all the computations performed, in order to comply with the FAIR principles and add value162

to the data gathered. In the wing-study example, the most obvious relevant metadata would be163

the different input freestream conditions associated to each simulation result, but the user could164

be also interested in storing information on the specific hardware or software (version of the165

code, version of the compiler, ID of the computational node, and so on) used for the simulations,166

for example. The information that needs to be extracted might be scattered across the different167

files that are usually generated during numerical calculations, such as the input and output files168

associated with the simulation, as well as files generated by the HPC system. Therefore, the user169

will have to go through all these files for each simulation and recursively extract and store the170

metadata. Doing such a job by hand would be certainly time consuming and would look as a171

viable option only if the number of simulations is very limited. In HPMC applications where172

hundreds of simulations are performed, this approach would be prohibitive to say the least and,173

therefore, the use of a dedicated extraction routine would be the preferential and most efficient174

choice. At this point, for the user it would be a matter of either writing an extraction routine175

ing.grid, 2024 5

Giuseppe


Giuseppe


Giuseppe




RESEARCH ARTICLE HOMER: a metadata crawler for script-based workflows

Figure 1: The five steps the crawler is currently composed of and related input/output files.

from scratch, which would guarantee a perfect compatibility even for very specific codes but176

requires time and resources directly spent by the user, or employ an already available tool, at the177

price of possible overheads to properly implement the tool within the workflow. In the latter178

case, HOMER would come in handy as a valid support for the researchers. In fact, HOMER179

is intended to be used, potentially, for any script-based application and is designed to be easily180

adjusted to different research fields.181

3 Code Description182

3.1 Characteristics183

HOMER is a code written in python and, at the moment, its complete extraction workflow184

consists of 5 steps, as shown in figure 1. The code has been developed as a collection of modular185

routines, each performing a different action, rather than as a single script. This guarantees a186

flexible application of the crawler, as the user doesn’t have always to perform all the steps187

described in the next subsection, especially once the initial setup of the workflow has been188

done for the first time. The modularity of the code also allows the developers and the users to189

easily modify and expand the capabilities of the crawler, so that the code can be tailored for190

specific applications, if needed. HOMER can be employed both locally and on HPC systems.191

However, it should be noted that, as of now, it does not support a parallel implementation to192

parse the target files. Moreover, the tool only covers the stages of planning, creating/collecting193

and processing/analyzing within the data life cycle (figure 2).194

Conceived as a tool to be integrated in script-based workflows, the crawler should be run after195

the simulation (or, potentially, any processing step), similarly to ExtractIng. Hence, the metadata196

are naturally extracted in edge mode (where the data are generated). However, the tool can also197

be used to retrieve metadata from centrally-stored, previously collected data, similarly to Xtract.198

In this case, though, the user has to perform some extra steps according to the specific case at199

hand (an example is given at the end of section 4). Together with metadata extraction, the tool200

gives the user the opportunity to perform some simple post-processing operations as well, such201

as trimming strings or calculating the minimum, maximum or mean of a series of values.202

3.2 Implementation203

When running the code for the first time, five steps (figure 1) are needed, with two of them204

requiring direct user input. The overview of this five-steps workflow is given in the next205

paragraphs, while an application on a CFD-based example is shown in section 4.206

ing.grid, 2024 6

Giuseppe


Giuseppe


Giuseppe




RESEARCH ARTICLE HOMER: a metadata crawler for script-based workflows

Figure 2: Data Life Cycle [21].

The first step consists in reading the ontology file and creating an empty dictionary containing207

the flat classes as specified in the ontology. A “flat class” in this context is the initial state of208

the class in which the properties have not been specified, yet. The step is performed by the209

routine ClassUtils.py and takes advantage of the python package Owlready2 to work on210

the ontology. The empty dictionary is a list of the classes and their attributes as they appear in211

the ontology file. The dictionary acts as a template, where all the flat classes are listed but not212

filled-in, yet. Hence, no specific instance of a class is created at this point. The file, however,213

contains the fields that allow the user to specify how many instances and related properties of214

each class are to be created.215

The second step has to be performed manually and serves the purpose of preparing the dictionary216

file to be used by the “Multiplexer”, as explained in the third step. The user needs to specify217

how many instances of each class need to be retrieved. This is done by giving a numerical218

value to the keyword __count__ in the corresponding class. Similarly, the user can specify how219

many properties each instance of a class needs to have by indicating the numerical value in the220

corresponding property list.221

The third step consists in the Multiplexer and is performed by the routine Multiplexer.py.222

The output is the original flat-class dictionary which has been now expanded according to the223

needs of the user, so that the new file contains a list of all the needed instances for each class and224

all the properties for each instance of a class.225

The fourth step again has to be performed manually. The user has to fill in the multiplexed226

dictionary by specifying, for each instance and property, where the crawler should look for227

the data and how it should retrieve them. This information is to be provided by specifying the228

ing.grid, 2024 7

Giuseppe


Giuseppe




RESEARCH ARTICLE HOMER: a metadata crawler for script-based workflows

three keywords "path", "type" and "pattern". The filled expanded dictionary works as a229

configuration file for the final step.230

The fifth and last step consists in the actual extraction of the metadata and is performed through231

the routine EntityUtils.py. Once the metadata have been extracted, it is printed out to a file232

in a structured human-readable format (JSON or YAML). Currently, metadata can be extracted233

from files, such as text files using regular expressions or HDF5 files using h5py, from the output234

of a operating-system command, or can be directly hardcoded during the fourth step, if needed.235

As mentioned, the user must first configure the crawler to the specific simulation code in use236

(type and amount of metadata available to be extracted, location and format of the target files,237

extraction methods...). This involves the two (lengthy) manual steps just described. However,238

once the first setup has been completed, the configuration file (created at the end of step four)239

can be re-used with little to no modification every time a new simulation is performed by the240

user and new metadata need to be extracted. Specifically, step five simply needs to be performed241

in the subsequent runs. This allows for a seamless integration of the tool within the workflow.242

4 Example Application243

In this section, a simple usage of the tool is shown for an application within the CFD field.244

Namely, the same test problem of a wing aerodynamic optimization mentioned in 2 is considered,245

in order to show the capabilities of the tool directly applied to an engineering application.246

Nonetheless, the reader is also invited to try out the more generic step-by-step test case based on247

a simplified “Pizza ontology” available in the GitLab code repository (all the relevant files are248

in the directory /SimpleApplication_PizzaOntology). This purposely generic example is249

intended to provide a complete overview of the implementation of HOMER within a script-based250

workflow in a simple, clear and application-independent way. The ontology file used in the251

initial step is loosely based on the “Pizza ontology” provided by Stanford University in their252

Protégé tutorial [22].253

4.1 Application to a CFD case254

Taking the case of simulations on an airplane wing at different freestream conditions as an255

example, the user could be interested in extracting values such as freestream pressure, temperature,256

Mach and Reynolds number, as well as the ID-number of the node(s) where the calculation was257

performed and the software version used at the time of the calculation. This metadata information258

would then be attached to the results of the corresponding simulations to help making the data259

compliant with the FAIR principles.260

In this example, the code NSMB [23] is employed to perform the simulations, and all the261

relevant pieces of information are extracted from the input and output files of the code and are262

classified according to a simplified version of the Metadata4Ing ontology for sake of simplicity.263

Therefore, in this example, the reference classes are limited to "Processing_Step", "Tool"264

and "Method", with information such as parameters name and numerical value being considered265

as properties of those classes.266

ing.grid, 2024 8

Giuseppe


Giuseppe


Giuseppe


Giuseppe


Giuseppe


Giuseppe




RESEARCH ARTICLE HOMER: a metadata crawler for script-based workflows

In this example, it is assumed that the crawler is employed in edge mode, meaning that the267

HOMER is invoked right after each simulation has finished to immediately extract the corre-268

sponding metadata. This means that all the file paths specified by the keyword "path" are269

relative paths, as the crawler runs from the same directory where the simulations are performed.270

The example shows all the five steps described in section 3, which would be ideally required271

for the first usage of the tool. After that, HOMER can be seamlessly integrated in the workflow272

without further modifications.273

After setting up the (optional) python virtual environment and having installed the crawler, the274

first command to run is ClassUtils.py, which retrieves the ontology and creates a dictionary275

with the flat classes (i.e. classes to be filled-out by the user and where, right after step 1, the276

properties have simply placeholder values) in the form of a .json file. The content of such a277

file would look like the one shown in the next lines.278

1 {279

2 "Processing_Step": {280

3 "__count__": 1,281

4 "__restrictions__": "",282

5 "Name": [1],283

6 "Parameter": [1],284

7 "Has_numerical_value": [1],285

8 },286

9 "Tool": {287

10 "__count__": 1,288

11 "__restrictions__": "",289

12 "System_component": [1],290

13 "Name": [1],291

14 "ID": [1],292

15 },293

16 ...294

17 }295

Listing 1: Example of the content inside the file produced after step 1.

This empty dictionary has to be manually adjusted to the specific case by the user. In this296

example, only one processing step is foreseen (running the simulation), for which five parameters297

are going to be extracted (pressure, temperature, Mach, Reynolds and starting time of the298

simulation). Therefore, the "Processing_Step" class will be repeated once ("__count__": 1)299

and will contain one "Name" and five "Parameter" and "Has_numerical_value" properties.300

Regarding the "Tool" class, assume to separate between “Hardware” and “Software”. Hence,301

two instances of such a class ("__count__": 2) need to be created, each of them with its own302

properties "System_component", "Name" and "ID". The result of this manual file manipulation303

is shown below.304

1 {305

2 "Processing_Step": {306

ing.grid, 2024 9

Giuseppe


Giuseppe


Giuseppe




RESEARCH ARTICLE HOMER: a metadata crawler for script-based workflows

3 "__count__": 1,307

4 "__restrictions__": "",308

5 "Name": [1],309

6 "Parameter": [5],310

7 "Has_numerical_value": [5],311

8 },312

9 "Tool": {313

10 "__count__":2,314

11 "__restrictions__": "",315

12 "System_component": [1,1],316

13 "Name": [1,1],317

14 "ID": [1,1],318

15 },319

16 ...320

17 }321

Listing 2: Filled-in .json file after step 2.

Running Multiplexer.py expands the classes according to the parameters indicated in the322

previous step. The output is shown below. The new empty dictionary contains all the instances323

and corresponding properties the crawler will use in the creation of the metadata file.324

1 {325

2 "Processing_Step": {326

3 "__restrictions__": "",327

4 "Name": {328

5 "path": "",329

6 "type": "",330

7 "pattern": "",331

8 "postprocessor": {332

9 "type": "",333

10 "args": ""334

11 }335

12 },336

13 "Parameter_1": {337

14 "path": "",338

15 "type": "",339

16 "pattern": "",340

17 "postprocessor": {341

18 "type": "",342

19 "args": ""343

20 }344

21 }345

22 },346

23 ...347

ing.grid, 2024 10

Giuseppe




RESEARCH ARTICLE HOMER: a metadata crawler for script-based workflows

24 "Has_numerical_value_1": {348

25 "path": "",349

26 "type": "",350

27 "pattern": "",351

28 "postprocessor": {352

29 "type": "",353

30 "args": ""354

31 }355

32 },356

33 ...357

34 },358

35 "Tool_1": {359

36 "__restrictions__": "",360

37 "Software_component": {361

38 "path": "",362

39 "type": "",363

40 "pattern": "",364

41 "postprocessor": {365

42 "type": "",366

43 "args": ""367

44 }368

45 },369

46 ...370

47 },371

48 ...372

49 }373

Listing 3: Dictionary with all the classes and their properties expanded by the multiplexer in step 3.

The multiplexed dictionary has to be filled in manually again by the user. How to fill in the374

dictionary depends on how the user wants to retrieve the data and where the information is stored.375

In this example, data are all extracted from plain text files and the crawler uses regular expressions376

to locate and read the data. This is done by specifying the keywords: "path", "type" and377

"pattern". The entries in "postprocessor" can be left empty for the sake of this example.378

The lines below show how to hardcode metadata by providing a string in "type" (for the379

property "Parameter_1", where the user directly provides the name of the parameter), retrieve380

information from a file using regular expressions ("Has_numerical_value_1", retrieved from381

the file specified in "path") and from the output of a terminal command ("ID", where the382

terminal command is given in "pattern").383

1 {384

2 "Processing_Step": {385

3 ...386

4 "Parameter_1": {387

5 "path": "",388

ing.grid, 2024 11

Giuseppe


Giuseppe


Giuseppe


Giuseppe




RESEARCH ARTICLE HOMER: a metadata crawler for script-based workflows

6 "type": "string",389

7 "pattern": "Freestream Mach number",390

8 "postprocessor": {391

9 "type": "",392

10 "args": ""393

11 }394

12 }395

13 },396

14 ...397

15 "Has_numerical_value_1": {398

16 "path": "input.dat",399

17 "type": "regex",400

18 "pattern": "Mach :\\s(.*)\\n",401

19 "postprocessor": {402

20 "type": "",403

21 "args": ""404

22 }405

23 },406

24 ...407

25 },408

26 "Tool_1": {409

27 ...410

28 "ID": {411

29 "path": "",412

30 "type": "os",413

31 "pattern": "hostname",414

32 "postprocessor": {415

33 "type": "",416

34 "args": ""417

35 }418

36 },419

37 ...420

38 },421

39 ...422

40 }423

Listing 4: Filled-in dictionary in step 4.

Finally, EntityUtils.py is used to run the actual extraction routine, which retrieves the meta-424

data according to the parameters specified in the previous step. The output file is shown below425

and could be either a .json or a .yaml file, according to the user needs.426

1 {427

2 "Processing_Step": {428

3 "Name": "Wing simulation",429

ing.grid, 2024 12

Giuseppe


Giuseppe


Giuseppe




RESEARCH ARTICLE HOMER: a metadata crawler for script-based workflows

4 "Parameter_1": "Freestream Mach number",430

5 "Parameter_2": "Freestream pressure",431

6 "Parameter_3": "Freestream temperature",432

7 "Parameter_4": "Freestream unit Reynolds number",433

8 "Parameter_5": "Start time",434

9 "Has_numerical_value_1": "0.35",435

10 "Has_numerical_value_2": "61640",436

11 "Has_numerical_value_3": "262",437

12 "Has_numerical_value_4": "5.607E6",438

13 "Has_numerical_value_5": "10:13:31"439

14 },440

15 "Tool_1": {441

16 "System_component": "Hardware",442

17 "Name": "lrz-coolmuc2-linux-cluster-2022"443

18 "ID": "i22r07c05s05"444

19 },445

20 "Tool_2": {446

21 "System_component": "Software",447

22 "Name": "NSMB",448

23 "ID": " 6.09.21 Date: 28 - January - 2021 "449

24 },450

25 "Method": {451

26 "Name": "LU-SGS"452

27 }453

28 }454

Listing 5: Final .json file containing the extracted metadata after step 5.

At this point, the generated metadata file can be stored together with the output data from the455

simulation. Whenever the user performs a new simulation and wants to extract the same type of456

metadata, there is no need to repeat all five steps of the process. In fact, the filled multiplexed457

dictionary created in step 4 will not change and acts as a configuration file that can be directly458

re-used in step 5. This means that the user needs only to add the command that runs step 5 in the459

script-based workflow. This corresponds to using HOMER in edge mode, which means invoking460

the crawler each time new data is generated at the end of a CFD simulation.461

The other option would be to use the crawler after all the simulations have been run in order to462

retrieve all the metadata at once, which corresponds to using the crawler in central mode. In this463

case, the user will need to specify absolute file paths (via the keyword "path" in the multiplexed464

.json file) to point to the files containing the information. This means that the user needs to465

create an extra script that allows the crawler to search all the relevant folders and files. Such a466

script would be specialized according to the user’s simulation environment and workflow. Hence,467

no example of such a usage can be given in the context of the generic CFD-showcase described468

in this work. However, an example script is provided in the GitLab folder for the Pizza-ontology469

tutorial. It must be noted that central and edge modes are not features of the tool itself, but are470

ing.grid, 2024 13

Giuseppe


Giuseppe


Giuseppe


Giuseppe




RESEARCH ARTICLE HOMER: a metadata crawler for script-based workflows

different ways of using HOMER. It’s up to the users to decide which is the best usage based471

on their needs and preferences. This, however, shows again the flexibility of the tool. Another472

remark is that the user doesn’t need to adhere strictly to the chosen ontology file, nor does the473

user have to use an ontology based on Metada4Ing. At any of the steps where manual input474

is needed, the user can adjust the classes and properties according to the case-specific needs.475

For example, the user could rename the property "Parameter" to "Variable" in the class476

"Processing_Step" by manually amending the ".json" file while filling out the flat-class477

template during step 2. In fact, an ontology file is not even necessary for the actual extraction of478

the metadata, in principle. The user could even create it’s own .json file with its own classes479

and properties skipping the first two steps altogether. On one hand, of course, this approach480

requires a certain amount of overhead from the researcher side in terms of planning and preparing481

the .json files. On the other hand, it gives much more freedom to the user when it comes to482

adapt the crawler to the specific case at hand.483

Regarding the limitations of HOMER, the tool works best within standardized workflows, where484

the structure of the files containing the metadata to be extracted changes very little or not at485

all over time. Although, as shown, it would be possible to adapt the crawler, and in particular486

the multiplexed dictionary, to new file structures thanks to the flexibility of the tool, such an487

operation could take a considerable amount of time and effort from the user side if performed488

for every new application of a (changing) work flow. Hence, it appears sensible to limit the use489

of the crawler to cases where well-known and relatively fixed data structures are employed as it490

is common in most numerical and experimental research projects. The second limitation is the491

range of data formats the crawler can currently extract metadata from, which is limited to text492

and HDF5 files, together with outputs of terminal commands and hardcoded lines. Although the493

regular-expression parser allows to retrieve information from virtually any text file regardless494

of its extension, commonly used formats such as .xml have not been implemented, yet. As the495

crawler is designed flexible, this would be a straight forward process.496

5 Conclusion and Future Developments497

In this work, HOMER (HPMC tool for Ontology-basedMetadata Extraction and Re-use), a tool498

to automate metadata extraction in script-based workflows, has been presented. The crawler,499

a python-written code, allows for a flexible approach to metadata retrieval. As starting point,500

the user can provide an ontology file, whose metadata scheme represents the backbone of the501

extracted information. The classes and attributes from the ontology can be tailored to the specific502

case at hand and expanded by means of the multiplexer. Once the user has filled in the final503

dictionary, the actual metadata extraction is executed. This can happen both in edge mode504

(natural application for script-based workflows) or, with some further user input, in central mode.505

Then, the extracted metadata can be further post-processed by some routines included in the506

code. The use of the tool requires some user input and tuning for the first application, but after507

that, it can be seamlessly integrated in potentially any workflow.508

Currently, metadata can be retrieved from text and HDF5 files, from outputs of console commands509

or can be directly hardcoded in the configuration file. This limitation can be easily overcome in510

the future, as the code is designed in a modular way, thus allowing for a simple integration of511

ing.grid, 2024 14

Giuseppe


Giuseppe


Giuseppe


Giuseppe


Giuseppe




RESEARCH ARTICLE HOMER: a metadata crawler for script-based workflows

new building blocks. According to the user’s needs, new readers/writers of other file formats512

can be added. The same applies for the post-processing capabilities on the extracted metadata.513

Moreover, work to increase the amount of readable file formats is planned, at first focusing on514

the most common formats in CFD applications.515

As of now, HOMER can be already implemented in HPMC workflows, so as to enrich each516

processing step (e.g. mesh generation, simulation, post-processing, report) by adding the cor-517

responding metadata. This capability allows for the collection of valuable data (such as the518

energy consumption for a set of simulations) to enable secondary research and the development519

of new methodologies in HPC systems. In the current state, the tool would provide the best520

performance when used to extract metadata right after the creation of the data, as no parallel521

implementation for file parsing is present, yet. In its five-steps implementation described in this522

work, HOMER was mainly employed in the data life cycle for the processing stages of planning,523

creating/collecting and processing/analyzing. A future development of the tool would be to cover524

the complete data life cycle in a holistic approach, by providing the possibility to automatically525

preserve and publish/share the extracted metadata along with the research dataset. Through526

publishing not just the data but also administrative (preservation) metadata, third party users will527

be able to retrieve crucial information about accessibility, access rights and licenses among others.528

Bibliographic (author, identifiers) and descriptive (research domain, tools, methods, processing529

steps) metadata can be published in repositories together with the referenced research data, or530

be linked to the research data by persistent links and identifiers, if technical or organizational531

reasons impede a joint provisioning (for example, if the research data are too large to be stored532

in a common repository).533

One main factor of making data FAIR is the use of a controlled vocabulary with common534

terminology. This is guaranteed by the fact that HOMER supports the usage of semantic535

ontologies as metadata schemes. These schemes have to be matched somehow with searchable536

metadata fields in the corresponding repositories. Only few repositories offer such publishing537

options, like DaRUS (University of Stuttgart) [24], which uses predefined metadata blocks, or538

Coscine (RWTH) [25], which provides the possibility to use standardized or self-created metadata539

application profiles [26]. These schemes still have to be parsed with the corresponding metadata540

fields in the extracted metadata file, to provide the metadata in a standardized, searchable and541

indexable front end. The NFDI4Ing consortium is simultaneously working on a generic interface542

which combines different kinds of metadata and data repositories with one standard-based543

interface. This enables the linking between all data and metadata of the research data life cycle,544

including experiments, raw data, software, subject-specific metadata sets, and the tracking of545

usage and citations. Standardized and automatically extracted metadata files can easily be546

made findable and accessible by this new generic interface [27]. Therefore, HOMER can be a547

crucial piece within the metadata toolchain from using common vocabularies and automatized548

extracting to FAIR publishing. The already mentioned Metadata4Ing ontology has been used549

as the reference during the early stages of the development of HOMER. In the meantime, a550

HPMC-sub-ontology has been developed within Metadat4Ing. Hence, one of the next steps will551

be to further adapt HOMER to this new sub-ontology, allowing the tool to be more effective in552

the complete data life cycle of a CFD workflow on HPC systems.553

ing.grid, 2024 15



RESEARCH ARTICLE

6 Acknowledgements554

The authors would like to thank the Federal Government and the Heads of Government of the555

Länder, as well as the Joint Science Conference (GWK), for their funding and support within556

the framework of the NFDI4Ing consortium. Funded by the German Research Foundation557

(DFG) - project number 442146713. Moreover, the authors gratefully acknowledge the Gauss558

Centre for Supercomputing e.V. (www.gauss-centre.eu) for funding this project by providing559

computing time on the GCS Supercomputer SuperMUC-NG at Leibniz Supercomputing Centre560

(www.lrz.de).561

7 Roles and contributions562

Giuseppe Chiapparino: Conceptualization; Investigation; Methodology; Software - testing;563

Validation; Writing – original draft564

Benjamin Farnbacher: Data curation; Investigation; Writing – original draft (Introduction and565

Conclusions)566

Nils Hoppe: Conceptualization; Investigation; Methodology; Software - development and567

design568

Radoslav Ralev: Software - design, development, implementation and testing569

Vasiliki Sdralia: Writing – original draft (Introduction)570

Christian Stemmer: Funding acquisition; Resources; Supervision; Writing – review and editing571

of original572

References573

[1] P. B. Heidorn, “Shedding Light on the Dark Data in the Long Tail of Science,” Library574

Trends, vol. 57, no. 2, pp. 280–299, 2008. DOI: doi:10.1353/lib.0.0036.575

[2] B. Schembera and J. M. Duràn, “Dark Data as the New Challenge for Big Data Science576

and the Introduction of the Scientific Data Officer,” Philosophy & Technology, vol. 33,577

pp. 93–115, 2020. DOI: https://doi.org/10.1007/s13347-019-00346-x.578

[3] NFDI4Ing Consortium. “Website.” (2022), [Online]. Available: https://nfdi4ing.de.579

[4] Metadata4Ing Workgroup. “Metadata4ing: An ontology for describing the generation of580

research data within a scientific activity.” (2022), [Online]. Available: https://nfdi4i581

ng.pages.rwth-aachen.de/metadata4ing/metadata4ing/index.html#ref.582

[5] DCMI Usage Board. “Dcmi metadata terms.” (2020), [Online]. Available: https://www583

.dublincore.org/specifications/dublin-core/dcmi-terms/.584

[6] Lebo, Timothy and Satya, Sahoo and Deborah, McGuinness. “Prov-o: The prov ontology.”585

(2013), [Online]. Available: https://www.w3.org/TR/prov-o/.586

ing.grid, 2024 16

https://doi.org/doi:10.1353/lib.0.0036
https://doi.org/https://doi.org/10.1007/s13347-019-00346-x
https://nfdi4ing.de
https://nfdi4ing.pages.rwth-aachen.de/metadata4ing/metadata4ing/index.html#ref
https://nfdi4ing.pages.rwth-aachen.de/metadata4ing/metadata4ing/index.html#ref
https://nfdi4ing.pages.rwth-aachen.de/metadata4ing/metadata4ing/index.html#ref
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/
https://www.w3.org/TR/prov-o/
Giuseppe


Giuseppe


Giuseppe


Giuseppe




RESEARCH ARTICLE

[7] S. Liang, V. Holmes, G. Antoniou, and J. Higgins, “Icurate: A research data management587

system,” in Multi-disciplinary Trends in Artificial Intelligence, A. Bikakis and X. Zheng,588

Eds., Cham: Springer International Publishing, 2015, pp. 39–47, ISBN: 978-3-319-26181-589

2. DOI: 10.1007/978-3-319-26181-2_4.590

[8] C. S.Adorf, P. M. Dodd, V. Ramasubramani, and S. C. Glotzer, “Simple data and workflow591

management with the signac framework,” Computational Materials Science, vol. 146,592

pp. 220–229, 2018, ISSN: 0927-0256. DOI: https://doi.org/10.1016/j.commatsc593

i.2018.01.035.594

[9] L. Nagel and D. Lycklama, “Design principles for data spaces - position paper,” version 1.0,595

2021. DOI: 10.5281/zenodo.5105744.596

[10] T. J. Skluzacek, “Dredging a data lake: Decentralized metadata extraction,” in Proceedings597

of the 20th International Middleware Conference Doctoral Symposium, ser. Middleware598

’19, Davis, California: Association for Computing Machinery, 2019, pp. 51–53, ISBN:599

9781450370394. DOI: https://doi.org/10.1145/3366624.3368170.600

[11] T. J. Skluzacek, R. Chard, R. Wong, et al., “Serverless workflows for indexing large601

scientific data,” inProceedings of the 5th InternationalWorkshop on Serverless Computing,602

ser. WOSC ’19, Davis, CA, USA:Association for Computing Machinery, 2019, pp. 43–48,603

ISBN: 9781450370387. DOI: https://doi.org/10.1145/3366623.3368140.604

[12] J. Dixon. “Pentaho, hadoop, and data lakes.” (2010), [Online]. Available: https://jame605

sdixon.wordpress.com/2010/10/14/pentaho-hadoop-and-data-lakes/.606

[13] D. Merkel, “Docker: Lightweight linux containers for consistent development and deploy-607

ment,” Linux Journal, vol. 2014, no. 239, p. 2, 2014.608

[14] I. Foster, “Globus online: Accelerating and democratizing science through cloud-based609

services,” IEEE Internet Computing, vol. 15, no. 3, pp. 70–73, 2011. DOI: 10.1109610

/MIC.2011.64.611

[15] B. Allen, J. Bresnahan, L. Childers, et al., “Software as a service for data scientists,” IEEE612

Internet Computing, vol. 55, no. 2, pp. 81–88, 2012. DOI: 10.1145/2076450.2076468.613

[16] B. Schembera, “Like a rainbow in the dark: Metadata annotation for HPC applications in614

the age of dark data,” Journal of Supercomputing, vol. 77, pp. 8946–8966, 2021. DOI:615

https://doi.org/10.1007/s11227-020-03602-6.616

[17] B. Schembera and D. Iglezakis, “The Genesis of EngMeta - A Metadata Model for617

Research Data in Computational Engineering,” in Metadata and Semantic Research,618

Cham: Springer International Publishing, 2019, pp. 127–132, ISBN: 978-3-030-14401-2.619

DOI: https://doi.org/10.1007/978-3-030-14401-2_12.620

[18] S. Padhy, G. Jansen, J. Alameda, et al., “Brown dog: Leveraging everything towards621

autocuration,” in 2015 IEEE International Conference on Big Data (Big Data), 2015,622

pp. 493–500. DOI: 10.1109/BigData.2015.7363791.623

[19] G. P. Rodrigo, M. Henderson, G. H. Weber, C. Ophus, K. Antypas, and L. Ramakrishnan,624

“ScienceSearch: Enabling search through automatic metadata generation,” in 2018 IEEE625

14th International Conference on e-Science (e-Science), 2018, pp. 93–104. DOI: 10.110626

9/eScience.2018.00025.627

ing.grid, 2024 17

https://doi.org/10.1007/978-3-319-26181-2_4
https://doi.org/https://doi.org/10.1016/j.commatsci.2018.01.035
https://doi.org/https://doi.org/10.1016/j.commatsci.2018.01.035
https://doi.org/https://doi.org/10.1016/j.commatsci.2018.01.035
https://doi.org/10.5281/zenodo.5105744
https://doi.org/https://doi.org/10.1145/3366624.3368170
https://doi.org/https://doi.org/10.1145/3366623.3368140
https://jamesdixon.wordpress.com/2010/10/14/pentaho-hadoop-and-data-lakes/
https://jamesdixon.wordpress.com/2010/10/14/pentaho-hadoop-and-data-lakes/
https://jamesdixon.wordpress.com/2010/10/14/pentaho-hadoop-and-data-lakes/
https://doi.org/10.1109/MIC.2011.64
https://doi.org/10.1109/MIC.2011.64
https://doi.org/10.1109/MIC.2011.64
https://doi.org/10.1145/2076450.2076468
https://doi.org/https://doi.org/10.1007/s11227-020-03602-6
https://doi.org/https://doi.org/10.1007/978-3-030-14401-2_12
https://doi.org/10.1109/BigData.2015.7363791
https://doi.org/10.1109/eScience.2018.00025
https://doi.org/10.1109/eScience.2018.00025
https://doi.org/10.1109/eScience.2018.00025
Giuseppe


Giuseppe


Giuseppe


Giuseppe


Giuseppe


Giuseppe


Giuseppe


Giuseppe


Giuseppe


Giuseppe




RESEARCH ARTICLE HOMER: a metadata crawler for script-based workflows

[20] K. Frey, K. Schneider, O. Maus, and T. Mühlhaus. “Swate: A swate workflow annotation628

tool for excel.” (2022), [Online]. Available: https://github.com/nfdi4plants/Swa629

te.630

[21] UK Data Service, modified by TUM University Library (UB). “Data life cycle - icons.”631

(2022).632

[22] M. A. Musen, “The protégé project: A look back and a look forward,” AI Matters, vol. 1,633

no. 4, pp. 4–12, 2015. DOI: 10.1145/2757001.2757003. [Online]. Available: https:634

//doi.org/10.1145/2757001.2757003.635

[23] J. Vos, N. Duquesne, and H. J. Lee, “Shock wave boundary layer interaction studies using636

the NSMB flow solver,” in 3rd European Symposium on Aerothermodynamics for Space637

Vehicles, ESA SP-426, 1999.638

[24] University of Stuttgart. “Darus.” (2022), [Online]. Available: https://www.izus.uni-639

stuttgart.de/en/fokus/darus/.640

[25] RWTHAachen University. “Coscine.” (2022), [Online]. Available: https://coscine641

.rwth-aachen.de.642

[26] RWTHAachen University. “Aims – applying interoperable metadata standards.” (), [On-643

line]. Available: https://www.wzl.rwth-aachen.de/cms/wzl/Forschung/Forsch644

ungsumfeld/Forschungsprojekte/Projekte/~ivong/ProMiDigit-Process-Mi645

ning-fuer-No-Code/.646

[27] NFDI4Ing Consortium. “Metadata hub.” (2022), [Online]. Available: https://git.rwt647

h-aachen.de/nfdi4ing/s-3/s-3-3/metadatahub.648

ing.grid, 2024 18

https://github.com/nfdi4plants/Swate
https://github.com/nfdi4plants/Swate
https://github.com/nfdi4plants/Swate
https://doi.org/10.1145/2757001.2757003
https://doi.org/10.1145/2757001.2757003
https://doi.org/10.1145/2757001.2757003
https://doi.org/10.1145/2757001.2757003
https://www.izus.uni-stuttgart.de/en/fokus/darus/
https://www.izus.uni-stuttgart.de/en/fokus/darus/
https://www.izus.uni-stuttgart.de/en/fokus/darus/
https://coscine.rwth-aachen.de
https://coscine.rwth-aachen.de
https://coscine.rwth-aachen.de
https://www.wzl.rwth-aachen.de/cms/wzl/Forschung/Forschungsumfeld/Forschungsprojekte/Projekte/~ivong/ProMiDigit-Process-Mining-fuer-No-Code/
https://www.wzl.rwth-aachen.de/cms/wzl/Forschung/Forschungsumfeld/Forschungsprojekte/Projekte/~ivong/ProMiDigit-Process-Mining-fuer-No-Code/
https://www.wzl.rwth-aachen.de/cms/wzl/Forschung/Forschungsumfeld/Forschungsprojekte/Projekte/~ivong/ProMiDigit-Process-Mining-fuer-No-Code/
https://www.wzl.rwth-aachen.de/cms/wzl/Forschung/Forschungsumfeld/Forschungsprojekte/Projekte/~ivong/ProMiDigit-Process-Mining-fuer-No-Code/
https://www.wzl.rwth-aachen.de/cms/wzl/Forschung/Forschungsumfeld/Forschungsprojekte/Projekte/~ivong/ProMiDigit-Process-Mining-fuer-No-Code/
https://git.rwth-aachen.de/nfdi4ing/s-3/s-3-3/metadatahub
https://git.rwth-aachen.de/nfdi4ing/s-3/s-3-3/metadatahub
https://git.rwth-aachen.de/nfdi4ing/s-3/s-3-3/metadatahub
Giuseppe


Giuseppe



	Introduction
	Characterization of the problem
	Code Description
	Characteristics
	Implementation

	Example Application
	Application to a CFD case

	Conclusion and Future Developments
	Acknowledgements
	Roles and contributions

