
�

Date Submitted:

2023-09-26

Licenses:

This article is licensed under: cb

Keywords:

Data management, HDF5, metadata,

data lifecycle, Python, database

Data availability:

Software availability:

Software can be found here

SOFTWARE DESCRIPTOR

preprints
h5RDMtoolbox - A Python Toolbox for FAIR Data

Management around HDF5

Matthias Probst�
1

Balazs Pritz�
1

1. Institute for Thermal Turbomachinery, Karlsruhe Institute of Technology, Karlsruhe.

Abstract. Sustainable data management is fundamental to efficient and successful scientific

research. The FAIR principles (Findable, Accessible, Interoperable and Reusable) have been

proven to be successful guidelines to enable comprehensible analysis, discovery and re-use.

Although the topic has recently gained increasing awareness in both academia and industry,

the engineering sciences in particular are lagging behind in managing the valuable asset of

data. While large collaborations and research facilities have already implemented metadata

strategies, smaller research groups and institutes are often missing a common strategy

due to heterogeneous and rapidly changing environments as well as missing capacity or

expertise. This paper presents an open source package called h5rdmtoolbox, written in

Python. It is a general-purpose interface to HDF5 files with the aim of helping to quickly

implement and maintain FAIR research data management throughout the data lifecycle,

using HDF5 as the core file format. One of the key features of the toolbox is the flexible,

high-level implementation of metadata standards, adaptable to the changing requirements of

projects, collaborations and environments, such as experimental or computational setups.

Implementation of interfaces to existing metadata schemas such as EngMeta or the cf-

conventions are possible and part of the comprehensive documentation. Other benefits of

the toolbox include a simplified interface to the repository and database solutions for querying

metadata stored in HDF5 files.

1 Introduction1

Sustainable data management is fundamental in today’s data-driven world for several reasons.2

The amount of acquired data storage capacity has long ceased to be the limiting factor, while the3

computing power has increased greatly [1]. However, it is the ability to share data rather than4

generate it that defines success [2]. Furthermore, interdisciplinary and international collaborations5

have become essential in scientific research, and the main means of communication is based on6

digital documents [3]. A bottleneck in data exploration and processing, and therefore the general7

re-usability, is often the lack of auxiliary data (metadata). As a consequence, much time is spent8

on recovering missing information. In some cases, this may require to re-conduct simulations9

and experiments. Effective data management practices hence hold the potential of saving time10

and money as well as increasing the value of data at the same time.11

1

https://github.com/matthiasprobst/h5RDMtoolbox
https://orcid.org/0000-0001-8729-04821
https://orcid.org/0000-0001-9560-500X

SOFTWARE DESCRIPTOR FAIR HDF5-based Data Management

Introducing a new data management concept can be challenging due to conflicting priorities,12

expectations, and existing practices, as well as a lack of expertise or clear understanding of13

the benefits. Efficient use of standards is crucial for large and interdisciplinary collaborations.14

While those groups have developed domains-specific solutions, small research groups and PhD15

projects face challenges due to the use of multiple file formats, individual software solutions,16

personal preferences for storage and tools, and established structures [4]. Common issues are17

the lack of time and resources to develop and implement a comprehensive and sustainable data18

management approach [5], which fulfills the requirements of the community and good scientific19

practice. Therefore, flexible and manageable solutions are needed to address this issue.20

Although the implementation of a common management system is beneficial in the long term,21

both financially [6] and in terms of efficiency, it disrupts structures and requires time, resources22

and cultural change. In academia, high staff turnover is an additional barrier, making it difficult23

to establish sustainable solutions. The decay of value develops as projects progress, ultimately24

finish and contracts expire. Consequently, the value of data will diminish over time. This issue25

is discussed in more detail in [7], [8]. In addition, a value decay can also be observed with26

increasing distance from the source of the data. The further away and therefore less involved27

a potential data user is, the more information may be missing, either due to restricted access28

or limited personal connections. Ensuring that data is preserved and being interpretable at all29

times can be achieved by adhering to the so-called FAIR principles, which stand for Findable,30

Accessible, Interoperable and Reusable and were first introduced in 2016 by [9]. Since their31

publication, the principles have become the cornerstones of many scientific communities and32

help to establish a sustainable data management [10]. Structured, highly descriptive information33

about data, known as metadata, is an integral part of it. Metadata provides context about its34

creation, purpose, use, processing history and the meaning of datasets. Consequently, it enables35

data to be discoverable, interoperable and reusable.36

This work is a contribution to assist small collaborative groups or communities and doctoral37

researchers with achieving a FAIR research data lifecycle by using the HDF5 file format. These38

groups are often faced with challenges such as heterogeneous file formats, the absence of39

standards within their fields, and limited expertise and resources for sustainable data management.40

The paper describes the scope and concepts of a Python package named h5rdmtoolbox and how it41

facilitates the implementation of FAIR principles using theHDF5 file format. Complementing this42

manuscript, an extensive online documentation is provided [11], leveraging Jupyter Notebooks43

[12]. This documentation offers in-depth insights and additional examples for immediate usage,44

serving as a comprehensive resource for users seeking detailed information and practical guidance.45

1.1 Outline of the paper46

Firstly, the paper outlines the package’s scope in comparison to existing and related works. This is47

followed by a section stating the concepts and architecture of the toolbox, describing the applied48

design principles and methods. Subsequently, the paper discusses concrete implementation49

details of all sub-packages and provides illustrative examples, referencing to their relevance50

within the research data lifecycle. Limitations of the presented package are stated before the51

paper concludes and summarizes the presented work. An outlook is given on future developments52

and potential enhancements.53

ing.grid, 2023 2

SOFTWARE DESCRIPTOR FAIR HDF5-based Data Management

2 Scope and related work54

The primary aim of this toolbox is to offer comprehensive support throughout the lifecycle of55

research data (c.f. Figure 2) for small collaborative groups, communities, and doctoral researchers56

engaged in utilizing or contemplating the use of HDF5 files as their central file format. The file57

format is selected for various reasons, which are stated hereafter. A review of other file formats58

is beyond the scope of this work and literature should be referred to, for example [2], [8], [13].59

HDF5 features efficient storing of large multidimensional datasets together with metadata inde-60

pendent of the storage media, programming environment or operating system. The hierarchical61

structure of group and dataset objects (cf. Figure 1) resembles most engineering data. Attributes62

(key-value pairs) are means to store metadata and can be assigned to each object. The HDF5 file63

format is therefore regarded as self-explanatory. HDF5 finds application in numerous scientific64

domains, such as earth observation [14], high-energy physics [15] or fluid dynamics [16]. An65

in-depth presentation of the file format can be found in [17].66

Figure 1: Illustration of the hierarchical structure of an HDF file. The internal file structure is

organized like a file storage system, where folders are represented by the HDF group objects and

files by HDF dataset objects. Both objects can be associated with attributes, which provide the

metadata in order to make the objects interpretable.

Despite all the advantages of the file format, the organization of data management around HDF567

is left to the user [18]. This means that the choice of attribute names and values is not regulated by68

any standard. Findability, effective re-usability and automatic analysis, however, are dependent69

on standardization [19].70

The necessity for designing management solutions around the HDF5 file format is therefore71

evident. While existing solutions, such as [8], [14]–[16], [20], [21] address this need, they72

are often domain-specific, primarily focused on efficiently meeting the demands of specific73

communities rather than providing a generalized framework applicable to diverse problems. For74

example, formats like Nexus [15] or Photon-HDF5 [21] prescribe specific group and dataset75

organizations and metadata usage tailored to their respective data sources, such as neutron and76

X-ray data and molecule spectroscopy experiments, respectively. Other libraries like Zarr [20]77

address challenges associated with very large data (terabyte-scale) in the field of bioimaging78

with a particular emphasis on optimized cloud-based operations and the sharing of HDF5-based79

datasets. Finally, questions of efficient database solutions for HDF5 are addressed in [1] and80

[22].81

Besides the specificity of the solutions, adopting aforementioned solutions to new problems is82

ing.grid, 2023 3

SOFTWARE DESCRIPTOR FAIR HDF5-based Data Management

very difficult due to their complexity and required expertise in the field. When data management83

solutions are needed for a concrete projects, it is crucial to minimize entry barriers. Currently, for84

HDF5, a general approach to manage data in all aspects during its lifecycle including metadata85

concepts, database solutions and practical interfaces are missing. The presented Python package86

h5rdmtoolbox seeks to bridge the gap between the advanced communities with domain-specific87

solutions and researchers trying to manage their data without established standards in place.88

Leveraging well-established Python packages, this toolbox offers high-level tools and interfaces89

within one package, that actively contribute to the promotion of FAIR data creation. As a whole,90

the package seeks to be a central resource of tools for scientists allowing them to manage their91

HDF5 data along the full data lifecycle from planning (1) via acquisition (2) and analysis to92

publication in data repositories (4) and sharing in databases (5). Figure 2 illustrates these stages93

and relates keywords to features of the toolbox.94

planning

co
ll
ec
ti
n
g

sh
arin

g

ex
pl
or
in
g

analyzing

Metadata

convention

Core File

HDF5

Standard Attribute

validation

HDF5-database

Zenodo

Metadata-aware

processing

HDF5 + xarray

ORCID

MongoDB

5
1

2

3

4

Figure 2: Illustration of the lifecycle of research data. Each phase is supported by the

h5rdmtoolbox. It starts by selecting a file format (HDF5) and a metadata concept (1) and

performing quality assurance measures during the selection and processing phase (2). Data is

analyzed effectively for scientific output in the next step (3). After publication, the availability of the

data should be ensured (4). (Meta)data quality finally is defined by its findability and consequently its

re-usable (5) for additional analysis at later time. The respective tools and solutions provided by the

toolbox and explained in this word are indicated by keywords around the lifecycle.

3 Concepts and architecture of the toolbox95

A key aspect of the toolbox lies in its adaptable implementation of metadata standards and96

interfaces to databases and repositories, allowing it to be relevant across many research fields97

with varying requirements. The challenge is to attain this flexibility without introducing excessive98

complexity, all while ensuring adherence to the FAIR principles. The toolbox achieves this99

through four principles:100

1. Relevant programming language: The choice of programming language significantly101

ing.grid, 2023 4

SOFTWARE DESCRIPTOR FAIR HDF5-based Data Management

impacts the usability and acceptance of this toolbox, as well as data handling in general.102

Python is selected for this purpose due to its status as one of the most popular and widely103

used language in the scientific community. The high relevance of Python in the field104

allows the toolbox to address as many users as possible.105

2. One core file format: The Hierarchical Data Format (HDF5) [23] is selected as the core106

and general purpose file format. It is suitable for most scientific and engineering data107

sources and allows metadata to be stored with the raw data, making it a self-explanatory108

data store. The file format is open-source, well-supported by the HDF5 Group [23] and has109

a proven track record in many disciplines. Opting for a single file format as the foundation110

for a management toolbox is, therefore, not limiting. Prioritizing user-friendliness and111

widespread acceptance, the toolbox implements high-level interfaces to HDF5, extending112

the capabilities of the commonly used Python package h5py.[24].113

3. Flexible Metadata Standardization: Enabling the storage of metadata alongside raw114

data necessitates its standardization (convention) to achieve discoverability. The toolbox115

introduces a simple and flexible definition of so-called standard attributes. Users can design116

their own convention, which provides feedback about the correctness of the (meta)data117

created. This ensures that users maintain the accuracy and completeness of their data and118

metadata.119

4. Extensibility: Adaptability extends beyond just metadata standards; it encompasses120

various aspects of the toolbox, including interfaces to databases and data repositories.121

Abstract classes establish communication rules between HDF5 and users, enabling the122

community to add new interfaces on top of the currently implemented ones and to make123

them available to others through the toolbox.124

In this work, a five-stage representation of the research data lifecycle is adopted, as illustrated125

in Figure 2. This framework forms the basis for the toolbox’s architectural design, aligning its126

functionalities with the key stages of the data lifecycle. Consequently, the toolbox is structured127

into five sub-packages and depicted in Figure 3. The numerical assignments in the figure directly128

correlate with the roles of these sub-packages in the stages of the data lifecycle (c.f. Figure 2).129

This structured approach enhances the toolbox’s utility by providing specialized tools for each130

phase of the research data lifecycle.131

Each sub-package corresponds to a key component in the management of HDF5 files throughout132

the data lifecycle. These components are designed in a manner that ensures independence from133

each other, facilitating individual development and modularity. One exception is made to the134

sub-packages wrapper and conventions.135

The following sections will highlight the features and implementations of the sub-packages, as136

well as their importance within the data lifecycle.137

3.1 layout138

Research projects start with a scientific question and a data management plan (DMP) [25]. The139

DMP outlines how data is handled during and after the project. One important aspect is the140

agreement on common exchange formats (in this work HDF5). It has a significant impact on141

ing.grid, 2023 5

SOFTWARE DESCRIPTOR FAIR HDF5-based Data Management

h5rdmtoolbox

wrapperconventiondatabase layout repository

uses

1 1
1

2 3
3

4
4

5 5
5

2
2

Figure 3: Organization of the sub-packages in the presented package. The core module is called

wrapper, which adds useful functionality for the user when interacting with HDF5 files. It uses the

convention module to manage metadata requirements when creating and reading data. The other

modules are not dependent on each other and must be imported as required. The numbers indicate

their main areas of application within the different stages of the data lifecycle, as shown in Figure 2.

the realization of a FAIR data cycle as a whole, especially, when it comes to sharing data [20].142

Besides a common vocabulary, the internal structure (layout) of the file is important. It is the143

basis for reliable processing and automated analysis. The hierarchical structure of HDF5 files144

allows various strategies to organize data and therefore must be regulated by the project data145

manager.146

The sub-package layout implements the class Layout, which is a collection of specifications.147

Each specification is a query which will be called during the validation of a file. The motivation148

behind it is, that everything, that is expected to exist in a file, must be findable. The code in149

Listing 1 illustrates the definition of a layout: First, the layout object is created. Then two150

specifications are added by providing a function and query parameters (using pseudocode for151

simplicity). The first parameter can be any function which is able to take the query parameters152

and returns a list of found HDF5 objects. As part of the toolbox and its documentation1, a153

database solution provided in the sub-package database is used.154

1 from h5rdmtoolbox import layout155

2 lay = layout.Layout()156

3 spec1 = lay.add(func=database_function,157

4 query=<has dataset with name "x_velocity")158

5 spec2 = lay.add(func=database_function,159

6 query=<datasets have the attribute "units">)160

7 lay.validate(<hdf5 filename>)161

Listing 1: Psuedocode example for a layout definition and validation of an HDF5 file.

The layout concept should be part of every phase in the data lifecycle. After its definition in the162

planning phase (1) it can be useful to validate the integrity of the file at each stage, as the content163

may have been changed. To check if the layout still adheres to the planned definition contributes164

to reliable data and complete files. Avoiding missing information through careful definition of165

the file content in combination with regular checks is the basis of FAIR data.166

1. https://h5rdmtoolbox.rtfd.io/en/latest/layout/index.html

ing.grid, 2023 6

https://h5rdmtoolbox.rtfd.io/en/latest/layout/index.html

SOFTWARE DESCRIPTOR FAIR HDF5-based Data Management

3.2 convention167

In addition to a robust HDF5 layout, meaningful and comprehensive metadata for HDF5 datasets168

and groups is crucial, ensuring that files are interpretable by both humans and machines. During169

the planning phase (1), a selection of relevant attributes for the investigated problem is important.170

The quality of these attributes significantly influences the findability of data within an HDF5 file,171

as well as the reusability and interoperability aspects of FAIR data in general. The term ”quality”172

here refers to whether attributes are linked to existing metadata concepts that can be referenced173

to persistent sources. Examples include controlled vocabularies such as the cf-conventions [19],174

metadata schemas like EngMeta [26], or ontologies like metadata4ing [27]. These sources175

provide standardized and well-defined terms that enhance the clarity and consistency of metadata,176

contributing to improved data discoverability and reuse. Documentation for the toolbox [11]177

includes examples showcasing the possible utilization of these standards within the toolbox. The178

concept of conventions is explained in the following.179

The h5rdmtoolbox implements the concept of so-called ”standard attributes” as part of a ”conven-180

tion” to validate relevant metadata (HDF5 attributes) during runtime as the user writes data to the181

file. Figure 4 illustrates a common workflow, which makes use of this concept. The stakeholders182

of a project define and share a set of standardized attributes in the form of a convention. This183

document is shared across all users, which are directly working with HDF5 files. By integrating184

the convention into their workflows through the h5rdmtoolbox, they obtain direct feedback185

through a validation mechanism. As a result, the quality in terms of reliable and comprehensive186

data description through attribute is ensured and basis for the FAIRness of HDF5 file is set.

convert

getreport

reject

analyzing, ...

data generation

create, manage &

convention

stakeholders publish

planning

collecting

hdf5

Validator

Figure 4: Workflow of collecting and converting the source data. The convention validates the

created HDF5 files and serves as a feedback loop to the file creators or the software developers

writing the conversion scripts. Only validated files can be further processed or published.

187

As shown in the class diagram in Figure 5, a Convention objects takes a list of StandardAttribute188

objects. The important properties of a StandardAttribute are validator and target_method. The189

target_method assigns the object to a method of the h5py package (other options are __init__190

or create_group) and the validator defines how the attribute is validated during assignment. A191

minimal example of the two instances shown in Figure 5 is written in code in Listing 2. Note,192

ing.grid, 2023 7

SOFTWARE DESCRIPTOR FAIR HDF5-based Data Management

StandardAttribute

+ name

+ validator

+ validate(...)

+ description

Convention

+ add_standard_attribute()

+ register()

+ name

+ validate(file)

+ from_yaml(file)

+ from_json(file

+ contact

+ registered_standard_attributes

H5tbxConvention

...

name: ”h5tbx”

contact: ”0000-0001-8729-0482”

registered_standard_attributes = [...]

+ target_method

+ default_value

UnitAttribute <i><i>

name:” units”

validator: ”$units”

validate(...)

description: ”Phyiscal unit”

target_method: ”create_dataset”

defaut_value: ”$empty”

Figure 5: Class diagram of components Convention and StadardAttribute. The instances

”H5tbxConvention” and ”UnitAttribute” are used in Listing 2.

that the parameter ”units” in the function call is not part of the underlying h5py package but193

gets dynamically added by enabling the convention. It is also noteworthy that by setting the194

keyword ”$empty” as the default value, the attribute becomes obligatory. For HDF5 datasets,195

this is in fact a reasonable choice, as generally physical data is written to datasets, which require196

a physical unit.197

1 import h5rdmtoolbox as h5tbx198

2 h5tbx.use('h5tbx')199

3 with h5tbx.File(myfile.hdf, 'r+') as h5:200

4 h5.create_dataset('ds', data=4, units='m/s')201

Listing 2: Minimal example of using convention. By enabling the ”h5tbx”-convention, the standard

attribute ”units” becomes obligatory in the method create_dataset. The value of ”units” is validated

and automatically added to the newly created dataset or an error is raised.

As the class diagram suggests, conventions can also be defined in files (JSON or YAML). By202

doing so, the convention can be shared via data repositories or databases with all involved users.203

By enabling the project convention while manipulating the file, users get immediate feedback,204

whether the standardized attributes are valid or not (c.f. Figure 4. This is a difference to the205

concept of layouts, which are static validators. For further information and examples about the206

implementation details, pre-implemented validators as well as the user-defined creation of new207

ones, please refer to the documentation. For a more in-depth understanding of the implementation208

details, pre-implemented validators, and the creation of user-defined validators, please consult209

ing.grid, 2023 8

SOFTWARE DESCRIPTOR FAIR HDF5-based Data Management

the documentation [11], as this information exceeds the scope of this paper. The documentation210

provides extensive details, practical examples, and guidance to support users in utilizing and211

customizing conventions and validators within the h5rdmtoolbox.212

3.3 wrapper213

The package wrapper plays a central role within the toolbox by implementing a thin layer214

around the HDF5 Python library h5py. Besides user-friendly high-level methods for interactive215

representation of the file content in Jupyter Notebooks or helper methods for special datasets,216

the wrapper package is responsible for217

• integration of the convention concept into the h5py framework and218

• metadata-aware exchange of data through xarray object [28].219

The integration of the xarray package into the toolbox provides several advantages. As previously220

highlighted, one of the reasons for selecting HDF5 is its compatibility with the multidimension-221

ality of many scientific and engineering datasets, allowing the storage of attributes alongside222

the data. However, using numpy arrays as part of the h5py package results in the loss of two223

important sets of information. Firstly, numpy arrays can only represent array data, discarding224

attributes associated with the data. Secondly, the axis of a multidimensional array can only225

be addressed by their indices (0, 1, etc.), potentially losing references to other datasets in the226

HDF5 format (a concept known as dimension scales in h5py [24]). This limitation hinders the227

interpretation of values and their context.228

The xarray package addresses these limitations by wrapping its functionality around numpy229

arrays [28]. It enables the association of attributes to the values and allows the labeling of the230

axes in multidimensional arrays. This structure closely aligns with the HDF5 dataset model. By231

returning ”metadata-aware” xarray objects, the toolbox ensures that provenance information is232

added, enhancing the intuitiveness and reliability of data processing. The auxiliary information is233

consistently preserved during data utilization for visualization or other post-processing steps, as234

depicted in Figure 6. It is noteworthy, that xarray has a strong plotting utility, that automatically235

extracts information from the data object, incorporating it into the labels and title of the plot.236

The synergies between HDF5 and xarray, resulting in benefits like concise code and interactive237

visualization of metadata, are best illustrated through practical examples. To gain a deeper238

understanding and explore enhanced workflows and data operations, it is recommended to239

consult the online documentation of the h5rdmtoolbox. For the sake of completeness, a short240

example is given in the following. The code example in Listing 4 demonstrates the workflow241

as illustrated in Figure 6. A subset of the dataset ”data” is selected based on the coordinates.242

The return value is a xarray.DataArray on which the rolling mean is computed. The result is243

finally plotted on the screen. With only a few lines of code, the user obtains quick insight into244

the dataset while maintaining comprehensibility and traceability.245

1 import h5rdmtoolbox as h5tbx246

2 with h5tbx.File(filename) as h5:247

3 # select and read selected data and store in variable:248

4 d = h5['data'].sel(x=4.3, y=0.2, method='nearest')249

ing.grid, 2023 9

SOFTWARE DESCRIPTOR FAIR HDF5-based Data Management

write
x

y

data (10, 5, 7)

xarray.DataArray

attributes
include

/grp

y (5,)

x (7,)

time (10,)

units: s

File Result/Plot

read

process

x[m]

y
[m
m
]

time = 3.4 [s]

visualize

tim
e

Figure 6: The h5RDMtoolbx makes use of the xarray features. Instead of numpy arrays,

xarray.DataArray objects are returned, which allow carrying the dimension references and attributes

and results in comprehensive data processing and visualization.

5250

6 # process (compute rolling mean over time with window size 3):251

7 drm = d.rolling(time=3).mean()252

8253

9 # visualize the result:254

10 drm.plot()255

Listing 3: Example of data extraction using the toolbox. The returned value is an xarray.DataArray

containing comprehensive metadata from the underlying HDF5 dataset. This facilitates transparent

data operations and minimizes potential errors. Additionaly, many operations can be reduced to one

line of code, which makes scripts concise and traceable.

3.4 repository256

How data is shared depends on the scope and restrictions of the project (phase 4 in the lifecycle).257

Most use-cases will, at least for some time, store data locally for internal use or later upload258

to a data repository. The sub-package repository implements an abstract interface class from259

which concrete interfaces can be inherited. At the time of writing, only one such repository260

interface is implemented, namely Zenodo [29]. As Zenodo offers a testing and a production261

interface, two classes are depicted in Figure 7. Although Zenodo is one of the most popular262

repositories in the scientific community to publish scientific data which is open-access, more263

platform interfaces are planned to be added. The design of the repository sub-package explicitly264

promotes this by using an object-oriented design with an abstract interface class defining the265

user-platform-interaction. Figure 7 depicts the class design. A new repository called figshare266

[30] is added in the figure, although not being implemented in the current version. However, it267

illustrates a next possible implementation, which can be contributed by the community.268

The implemented interface class provides two option of uploaded files. Either the file is uploaded269

as it is, or a metadata file is generated before and then uploaded together with the HDF5 file.270

This has the following reasoning: Large HDF5 files are expensive to download in terms of271

time, especially if it turns out, that the data is not matching the expectations of a user. As data272

ing.grid, 2023 10

SOFTWARE DESCRIPTOR FAIR HDF5-based Data Management

RepositoryInterface

AbstractZenodoInterface

ZenodoRecord ZenodoSanboxDeposit

FigShare

Figure 7: The architecture of the repository sub-package allows adding new repository interfaces

beyond the existing Zenodo interfaces. The abstract class RepositoryInterface sets the rules, such

that other popular platforms such as figshare could be added by code contributors to the

h5rdmtoolbox. The gray components are implemented, the dashed lines indicate potential

extensions.

repositories generally only provide descriptive information about the type of the data publication273

(creator, version, time, keywords, license...) the content of large files can be only be investigated274

after its download. By uploading a metadata file, the internal structure and the attributes can be275

made available in a very small text file (e.g. JSON). It then becomes very feasible to download276

the small metadata file, investigate the content and then decide whether to download to large277

HDF5 file or not. This concept is illustrated in Figure 8.278

1 from h5rdmtoolbox.repository import zenodo279

2 repo = zenodo.ZenodoSandboxDeposit(None) # new testing deposit280

3281

4 # add metadata of data publication, not file content itself:282

5 from h5rdmtoolbox.repository.zenodo import metadata283

6 repo.metadata = zenodo.metadata.Metadata(...)284

7285

8 from h5rdmtoolbox.repository.h5metamapper import hdf2json286

9 repo.upload_hdf_file('my_file.hdf5', metamapper=hdf2json)287

10288

11 # download specific filename from the repo:289

12 meta_filename = repo.download('my_file.json') # get metadata info first290

13 meta_filename = repo.download('my_file.hdf') # if needed291

Listing 4: Example of data extraction using the toolbox. The returned value is an xarray.DataArray

containing comprehensive metadata from the underlying HDF5 dataset. This facilitates transparent

data operations and minimizes potential errors. Additionaly, many operations can be reduced to one

line of code, which makes scripts concise and traceable.

3.5 database292

The toolbox implements two ways of sharing and re-using by means of databases:293

ing.grid, 2023 11

SOFTWARE DESCRIPTOR FAIR HDF5-based Data Management

upload_file()

upload_hdf_file()

repository

Figure 8: The upload of files to a repository can be performed in two ways: A file can be either

uploaded directly or by first deriving a metadata file and then uploading both files. This is especially

helpful for large HDF5 files. Interested users may first download the metadata file and inspect the

content before downloading the large file.

1. Using HDF5 as a database inside a file system.294

2. Mapping HDF5 to the NoSQL database MongoDB [31].295

file system

query

</></>

</></>

FileDB

MongoDB

response

query

response

with HDF5 files

HDF5DBInterface

sequentially

perform query

map

metadata

Figure 9: Workflow of the two provided database solutions: The metadata of the HDF5 files can be

mapped to a MongoDB database and then filtered. The other option does not require a database

infrastructure but filters the HDF5 files sequentially and returns the data directly. For both solutions,

the query functions and return values are the same, because the interfaces are inherited from the

abstract database interface class.

Figure 9 shows the workflows for both present options. The first approach treats an HDF5 file296

itself as a database and multiple files as multiple databases respectively. The consequences are297

twofold: Firstly, no third party database needs to be used and set up. Secondly, because files298

are opened and searched sequentially, the performance of finding data is not compatible with a299

dedicated system. However, if there are only a few files or the search is within a single file, the300

inefficiency is outweighing. In addition, this concept, as implemented in the toolbox, requires301

no prior operations on the data and only takes a minimum number of lines for the user.302

The second approach extracts the file information and all metadata of each HDF5 object (datasets303

and groups) and writes it into the MongoDB. While this is the most time-consuming part, the304

query itself becomes highly efficient. The used syntax for the queries and the capabilities of the305

present solutions are outlined in detail in the documentation.306

ing.grid, 2023 12

SOFTWARE DESCRIPTOR FAIR HDF5-based Data Management

3.6 Documentation307

The h5rdmtoolbox is versioned via a GitHub repository and can be installed using the python308

package installer (pip). The current version is v1.0.2 and extensive documentation is automatically309

created and published [11]. The documentation website is generated based on Jupyter Notebooks.310

On the one hand, this results in practical documentation, showing code and explanations together.311

On the other hand, it allows users to reuse the code from the documentation for immediate312

application by simply copying the code snippets. As Jupyter Notebooks become more popular313

[12], [32], the option to download the full Notebooks will be another efficient option for most314

users who are new to the toolbox.315

4 Limitations316

As outlined before, this package serves as a general toolbox, introducing a management layer317

around HDF5 files. Therefore, its strength lies in the metadata organization and user-friendly318

interaction with HDF5 files, rather than high-performance data processing. This means, that319

during dataset creation and reading, additional processing is needed to validate the metadata320

usage. The process of actually writing and reading the file is dependent on the underlying321

package, which is h5py. For large datasets, however, the overhead is neglectable and the write322

or read process is dominating. No significant time differences between h5py and the toolbox323

are observed. The same accounts for the performance of working with dataset values. They324

are provided as xarray objects. Again, generating them based on the numpy array and other325

information from the HDF5 file requires some time. After this, the performance is dependent on326

the xarray package.327

The chosen design principles introduce two inherent limitations. Firstly, the package’s imple-328

mentation in Python inherently limits its compatibility to Python versions. Despite Python’s329

widespread popularity justifying this choice, it may pose a limitation for users familiar with330

other scripting languages like Matlab. While a similar implementation in other languages is331

theoretically possible, such an extension is beyond the scope of this work. Secondly, the selection332

of HDF5 as the core scientific file format imposes an inherent limitation. Not all scientific or333

engineering data may be well-suited for HDF5 files. While HDF5 is versatile, some specialized334

data types or structures may find more suitable alternatives outside the HDF5 format.335

Finally, it is essential to note that the number of interfaces to databases and repositories is336

currently limited. As of the current writing, the database sub-package includes implementations337

for mongoDB and a query solution using HDF5 itself. In the repository sub-package, only338

Zenodo is provided. Nevertheless, the toolbox is designed to permit and explicitly encourages339

further extensions by the community. This open architecture invites collaborative contributions340

to expand the range of interfaces and integrations with databases and repositories based on the341

evolving needs and preferences of users.342

5 Conclusion and Outlook343

The Python package h5rdmtoolbox has been introduced, which is designed to support small344

collaborative groups, communities, and doctoral researchers who use or consider using HDF5345

ing.grid, 2023 13

SOFTWARE DESCRIPTOR

files as their central file format. HDF5 is chosen for its self-descriptive capabilities and versatility346

in various scientific domains. However, the management of metadata and internal organization347

of datasets and groups, as well as facilitating interoperability with other frameworks, is left348

to the users. The toolbox aims to enhance the FAIR principles of data by providing general,349

comprehensive tools for managing HDF5 files throughout their lifecycle. While existing solutions350

exist to address management needs, they tend to be domain-specific and lack a generalized351

framework applicable to diverse problems. Some solutions may only focus on specific aspects of352

the data lifecycle, such as databases. In contrast, the presented toolbox adopts a broad approach,353

providing tools that enable users to create tailored management solutions for HDF5 files based on354

their specific scientific context. Rather than prescribing a singular solution, the toolbox fills the355

gap between well-established solutions utilized by large scientific communities and the absence356

of standards for individual researchers. By offering a Python package equipped with high-level357

tools and interfaces for HDF5 data management, the toolbox improves the FAIRness of HDF5358

files for scientists.359

With user-friendliness and low entry barriers in mind, the toolbox uses popular Python packages360

like ‘xarray‘ and ‘pydantic‘ as dependencies and adopts syntax into newly programmed solutions361

(e.g. query within HDF5 files is adopted from mongoDB). However, the toolbox is missing362

graphical user interfaces. This would strongly improve the usability and will lower the entry363

level, especially for less experienced programmers. Future work should set tje focus on the364

design of conventions and layouts, as this constitutes the bases of successful data management.365

Finally, additional testing is required. Although unit tests are implemented, practical testing must366

identify needs, weaknesses and thus potential for improvements. Application to various problems367

and scientific disciplines are planned and feedback from researchers will need to incorporate368

into the toolbox. This will extend capabilities, improve the code and allow it to be adapted to the369

needs of users. Current concrete use cases investigate fluid problems, such as computational370

fluid dynamics simulations and particle image velocity measurements. Lessons learned from371

these areas will be incorporated into future publications, while further examples and guidelines372

will be continuously added to the online documentation [11].373

6 Acknowledgements374

The software was developed in-house without any external funding and no conflicts of interested375

are declared. The authors would like to thank all users, who have been testing the toolbox so far376

and provided helpful feedback. A special thanks belong to Lucas Büttner for the helpful testing377

and feedback at the beginning of the project.378

7 Roles and contributions379

Matthias Probst: Conceptualization, Writing, Software Development – original draft380

Balazs Pritz: Project administration, Formal Analysis, Writing - review & editing381

ing.grid, 2023 14

SOFTWARE DESCRIPTOR

References382

[1] Y. Wang, Y. Su, and G. Agrawal, “Supporting a Light-Weight Data Management Layer383

over HDF5,” in 2013 13th IEEE/ACM International Symposium on Cluster, Cloud, and384

Grid Computing, IEEE, 2013, pp. 335–342. DOI: 10.1109/CCGrid.2013.9.385

[2] J. Georgieva, V. Gancheva, and M. Goranova, “Scientific Data Formats,” in Proceedings386

of the 9th WSEAS International Conference on Applied Informatics and Communica-387

tions, ser. AIC’09, Moscow, Russia: World Scientific, Engineering Academy, and Society388

(WSEAS), 2009, pp. 19–24, ISBN: 9789604741076.389

[3] E. National Academies of Sciences and Medicine, Open Science by Design: Realizing a390

Vision for 21st Century Research. Washington, DC: The National Academies Press, 2018.391

DOI: 10.17226/25116.392

[4] F. De Carlo, D. Gürsoy, F. Marone, et al., “Scientific data exchange: a schema for HDF5-393

based storage of raw and analyzed data,” Journal of synchrotron radiation, vol. 21, no. 6,394

pp. 1224–1230, 2014.395

[5] C. M. Klingner, M. Denker, S. Grün, et al., “Research data management and data sharing396

for reproducible research—results of a community survey of the german national research397

data infrastructure initiative neuroscience,” Eneuro, vol. 10, no. 2, 2023.398

[6] European Commission and Directorate-General for Research and Innovation, Cost-benefit399

analysis for FAIR research data : cost of not having FAIR research data. Publications400

Office, 2019. DOI: 10.2777/02999.401

[7] W. K.Michener, “Meta-information concepts for ecological data management,” Ecological402

Informatics, vol. 1, no. 1, pp. 3–7, 2006. DOI: 10.1016/j.ecoinf.2005.08.004.403

[8] N. Preuss, G. Staudter, M.Weber, R. Anderl, and P. F. Pelz, “Methods and technologies for404

research-and metadata management in collaborative experimental research,” in Applied405

Mechanics and Materials, Trans Tech Publ, vol. 885, 2018, pp. 170–183.406

[9] M. D. Wilkinson, M. Dumontier, I. J. Aalbersberg, et al., “The fair guiding principles for407

scientific data management and stewardship,” Scientific Data, vol. 3, no. 1, p. 160 018,408

2016, ISSN: 2052-4463. DOI: 10.1038/sdata.2016.18.409

[10] A. Jacobsen, R. de Miranda Azevedo, N. Juty, et al., “FAIR Principles: Interpretations410

and Implementation Considerations,” Data Intelligence, vol. 2, no. 1-2, pp. 10–29, Jan.411

2020, ISSN: 2641-435X. DOI: 10.1162/dint_r_00024.412

[11] Probst, Matthias, HDF5 Research Data Management Toolbox (Documentation). [Online].413

Available: https : / / h5rdmtoolbox . readthedocs . io / en / latest/, (accessed:414

18.12.2023).415

[12] J. M. Perkel, “Why Jupyter is data scientists’ computational notebook of choice,” Nature,416

vol. 563, no. 7732, pp. 145–147, 2018.417

[13] P. Greenfield, M. Droettboom, and E. Bray, “ASDF: A new data format for astronomy,”418

Astronomy and computing, vol. 12, pp. 240–251, 2015.419

[14] E. Taaheri and D.Wynne, “An HDF-EOS and data formatting primer for the ECS project,”420

Raytheon Company, Tech. Rep., Mar. 2001.421

ing.grid, 2023 15

https://doi.org/10.1109/CCGrid.2013.9
https://doi.org/10.17226/25116
https://doi.org/10.2777/02999
https://doi.org/10.1016/j.ecoinf.2005.08.004
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1162/dint_r_00024
https://h5rdmtoolbox.readthedocs.io/en/latest/

SOFTWARE DESCRIPTOR

[15] P. Klosowski, M. Koennecke, J. Tischler, and R. Osborn, “NeXus: A common format for422

the exchange of neutron and synchroton data,” Physica B: Condensed Matter, vol. 241,423

pp. 151–153, 1997.424

[16] T. Hauser, “Parallel i/o for the cgns system,” in 42nd AIAA Aerospace Sciences Meeting425

and Exhibit, 2004, p. 1088. DOI: 10.2514/6.2004-1088.426

[17] S. Koranne and S. Koranne, “Hierarchical data format 5: HDF5,” Handbook of open427

source tools, pp. 191–200, 2011.428

[18] S. Poirier, A. Buteau, M. Ounsy, et al., “Common Data Model Access: A Unified Layer to429

Access Data From Data Analysis Point OF View,” Icalepcs, Grenoble, October, 2011.430

[19] J. Gregory, “The CF metadata standard,” CLIVAR Exchanges, vol. 8, no. 4, p. 4, 2003.431

[20] J. Moore and S. Kunis, “Zarr: A cloud-optimized storage for interactive access of large432

arrays,” in Proceedings of the Conference on Research Data Infrastructure, vol. 1, 2023.433

[21] A. Ingargiola, T. Laurence, R. Boutelle, S.Weiss, and X.Michalet, “Photon-HDF5: an open434

file format for timestamp-based single-molecule fluorescence experiments,” Biophysical435

journal, vol. 110, no. 1, pp. 26–33, 2016.436

[22] L. Gosink, J. Shalf, K. Stockinger, K. Wu, and W. Bethel, “HDF5-FastQuery: Accelerat-437

ing complex queries on HDF datasets using fast bitmap indices,” in 18th International438

Conference on Scientific and Statistical Database Management (SSDBM’06), IEEE, 2006,439

pp. 149–158.440

[23] The HDF Group, Hierarchical Data Format, version 5. [Online]. Available: https://ww441

w.hdfgroup.org/HDF5/, (accessed: 18.12.2023).442

[24] A. Collette, Python and HDF5. O’Reilly Media, Inc., 2013, ISBN: 9781449367831.443

[25] A. Salazar, B.Wentzel, S. Schimmler, R. Gläser, S. Hanf, and S.A. Schunk, “How research444

data management plans can help in harmonizing open science and approaches in the digital445

economy,” Chemistry–A European Journal, vol. 29, no. 9, e202202720, 2023.446

[26] B. Schembera and D. Iglezakis, “EngMeta: metadata for computational engineering,”447

International Journal of Metadata, Semantics and Ontologies, vol. 14, no. 1, pp. 26–38,448

2020.449

[27] D. Iglezakis, D. Terzijska, S. Arndt, et al., “Modelling scientific processes with the m4i450

ontology,” in Proceedings of the Conference on Research Data Infrastructure, vol. 1,451

2023. DOI: /10.52825/cordi.v1i.271.452

[28] S. Hoyer and J. Hamman, “xarray: ND labeled arrays and datasets in Python,” Journal of453

Open Research Software, vol. 5, no. 1, 2017.454

[29] M.-A. Sicilia, E. García-Barriocanal, and S. Sánchez-Alonso, “Community curation in455

open dataset repositories: Insights from zenodo,” Procedia Computer Science, vol. 106,456

pp. 54–60, 2017. DOI: 10.1016/j.procs.2017.03.009.457

[30] M. Thelwall and K. Kousha, “Figshare: A universal repository for academic resource458

sharing?” Online Information Review, vol. 40, no. 3, pp. 333–346, 2016. DOI: 10.1108459

/OIR-06-2015-0190.460

ing.grid, 2023 16

https://doi.org/10.2514/6.2004-1088
https://www.hdfgroup.org/HDF5/
https://www.hdfgroup.org/HDF5/
https://www.hdfgroup.org/HDF5/
https://doi.org//10.52825/cordi.v1i.271
https://doi.org/10.1016/j.procs.2017.03.009
https://doi.org/10.1108/OIR-06-2015-0190
https://doi.org/10.1108/OIR-06-2015-0190
https://doi.org/10.1108/OIR-06-2015-0190

SOFTWARE DESCRIPTOR FAIR HDF5-based Data Management

[31] K. Chodorow and M. Dirolf,MongoDB - The Definitive Guide: Powerful and Scalable461

Data Storage. O’Reilly, 2010, pp. I–XVII, 1–193, ISBN: 978-1-449-38156-1.462

[32] T. Kluyver, B. Ragan-Kelley, F. Pérez, et al., “Jupyter Notebooks-a publishing format for463

reproducible computational workflows.,” Elpub, vol. 2016, pp. 87–90, 2016.464

ing.grid, 2023 17

	Introduction
	Outline of the paper

	Scope and related work
	Concepts and architecture of the toolbox
	layout
	convention
	wrapper
	repository
	database
	Documentation

	Limitations
	Conclusion and Outlook
	Acknowledgements
	Roles and contributions

