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Abstract.

Machine learning (ML), particularly within the domain of computer vision (CV), has established

solutions for automated quality classification using visual data in manufacturing processes.

Object detection as a CV method for quality classification provides a distinct advantage

in enabling the assessment of items within the manufacturing environment regardless of

their location in images. However, there are substantial challenges regarding labeled data

availability in manufacturing contexts, training examples, and the complexity of incorporating

within the subject. Real-world datasets present challenges in high resolutions and task

specificity that hinder the adoption of object detection by small- and middle-sized enterprises

(SMEs) for their manufacturing processes. In this article, we present a simple 640x640

low-resolution dataset based on plastic bricks for object detection, featuring two quality labels

to identify minor surface defects in some instances as an example of quality classification.

Analyzing our dataset with a YOLOv5 model on four different dataset sizes, we aim to

demonstrate the accuracy of a common object detection model in a simple manufacturing use

case, showcasing object detection with low-resolution images and the impact of varying data

availability. The mean Average Precision mAP@0.5:0.95 in correctly identifying instances

improved from 0.786 to 0.833 as we moved from the smallest data size of 485 instances to

the complete dataset of about 1500 instances. While our interest is specifically in showcasing

object detection for manufacturing with low-resolution images and limited data availability, the

generated data and trained model can serve as a common basis to further investigate object

detection tasks on a wider variety of similar quality classification use cases in manufacturing.

1 Introduction1

In unstructured or less structured environments, object detection and pose estimation are key2

capabilities to enable smart manufacturing applications, such as autonomous robots or process3

monitoring [1]. However, these areas in computer vision (CV) including advanced machine4

learning (ML) techniques are still in their infancy [2]. Although research reveals a robust5
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understanding of ML and applications, notably small- and medium-sized enterprises (SMEs)6

show low maturity with only 8 percent of SMEs in Germany having deployed ML technologies7

in a questionnaire done in 2020 [3]. Also, a further study with 368 german SMEs revealed in8

2021 that just 5.8 percent of them developed AI solutions by themselves [4]. The governmental9

project ”Mittelstand Digital” identified insufficient data as the second most significant obstacle10

among nine barriers to AI adoption in SMEs. Furthermore, the preparation of best practices and11

examples was highlighted as the most suitable public measure among 16 factors that support12

SMEs in AI integration [5].13

These challenges and circumstances underscore the critical necessity for open-source MLdatasets14

and pre-trained models, serving as illustrative examples to articulate best practices and facilitate15

the transfer of research into the industry for SMEs to deploy ML techniques such as object16

detection and foster their manufacturing processes. Additionally, such open-source publications17

must encourage FAIR principles to ensure efficient integration and interoperability of presented18

best practices for SMEs and stakeholders [6].19

Recent approaches introduced various object detection datasets, in diverse domains, such as20

for detection of industrial tubes or safety helmets in different scenarios [7],[8]. Moreover, the21

existing research contributes to datasets provided with a focus on object detection in the context22

of defect detection or quality classification of industrial goods, such as metal parts, printed23

circuit boards, or insulator components for electricity supply [9], [10], [11]. Also, datasets24

incorporating plastic bricks are available as artificial use cases [12], [13]. These serve as learning25

resources and provide realistic synthetic image datasets for training object detection methods in26

an understandable context [12].27

However, the literature found does not describe the specific subject area under investigation.28

Demonstrating a tangible object detection use case in manufacturing with low-resolution image29

data and development showcases considering limited data availability is not addressed in the30

literature. Exemplary model development showcases, illustrating best practices for developing31

algorithms of the corresponding datasets, are either not provided or lack description. Also,32

findability and descriptions of access licenses are not described, indicating an insufficient33

fulfillment of FAIR principles. For example, Digital Object Identifiers or Metadata are typically34

not provided within these resources. FAIRness evaluation software, such as F-UJI, evaluates35

the FAIRness of the cited resources with a score below 65 percent [14]. This highlights a36

significant gap in FAIR datasets and showcases that could offer tailored best practices for SMEs37

in manufacturing to foster their AI integration.38

Building upon the context of research challenges and existing approaches, we develop a simple39

low-resolution object detection dataset based on plastic bricks with some having minor surface40

defects. Furthermore, we train a current ML model of the YOLO series to detect the bricks and41

whether they show defects. Different sizes of datasets are used to assess how performance varies42

depending on the availability of data. Our primary discovery centers around achieving high accu-43

racy levels despite limited data availability and suboptimal camera resolutions, emphasizing the44

critical interplay between data volume, resolution, and the specific use case under consideration.45

We structure these by presenting the dataset and its properties first, then explaining its creation46

and methods in Section 2. In Section 3, we analyze the dataset with the open-source object47
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detection model YOLOv5 and provide a pre-trained architecture including insights and analytics48

of the training with varying dataset sizes. Hence, the data and model are published regarding49

FAIR principles with metadata ensuring the transferability of this publication to stakeholders,50

such as developers in SMEs. Finally, the contribution and its limitations will be discussed in the51

conclusions.52

2 Dataset53

The dataset encapsulates the complexities of surface defect detection with plastic toy bricks as54

objects. It comprises multiple plastic bricks of different colors and sizes within a single frame,55

that are either defective or valid. Defective bricks have indentations and deformations on the56

surface, aiming to resemble common surface defects in industrial manufacturing. The following57

section provides a comprehensive overview of the dataset, including insights into the collection58

methods and employed tools. Section 2.1 delves into the fundamental details and properties of59

the dataset, while Section 2.2 outlines the process of image collection and annotation creation.60

2.1 Data Description61

The dataset provides images of plastic toy bricks with surface damages as objects to inspect.62

While the bricks occur in multiple colors and sizes, the labels are provided binary with valid63

bricks and defective ones having damages on their surfaces. The dataset consists of 1500 images64

containing a total of approximately 4400 objects. Among these objects, there are roughly 200065

instances representing defects and 2400 representing valid instances. This balanced distribution66

of labels within the dataset serves to counteract possible biases and prevent models from learning67

disproportionately toward any particular class and therefore simplify the object detection task.68

Each image has a corresponding label. Table 1 shows all information provided by a label. The69

coordinates x-center and y-center are normalized and refer to the coordinates of the center point70

of a bounding box, that labels an object to inspect. Width and height represent the dimensions71

of the bounding box in pixels. Lastly, the label indicates the two classes valid and defective.72

Figure 1 overlaps the labels of each image. Figure 1a shows x-center and y-center. The uniform73

distribution counteracts any specific patterns in the locations of objects. Further, Figure 1b74

represents the height and width of each center and indicates the dimension of an object. The75

linear distribution occurs due to the quadratic geometry of all plastic bricks used.76

Class X-Center Y-Center Width Height

Defective 0.43984375 0.43125 0.0375 0.0546875

Valid 0.44765625 0.5921875 0.0390625 0.05625

Table 1: The content of the label file corresponding to the example image in Figure 3b
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(a) X-center and y-center are the normalized

coordinates of the bonding boxes around

objects

(b) Height and width represent the size of a

bounding box indicating the dimension of an

object and its distance to the camera

Figure 1: The distribution in both figures is nearly uniform and therefore counteracts specific

patterns in object locations

The correlogram in Figure 2 shows a detailed correlation of all data properties. It is a group of77

2-dimensional histograms showing each axis of the data against each other axis. The correlation78

statistics indicate the position, width, and height of the bounding boxes of the objects. The figure79

indicates that the dataset properties are balanced in each label combination with no clusters80

visible. The distributions of single labels present approximately normal distribution. Notably,81

outliers are infrequent, and those present are rare points rather than data values that significantly82

deviate from the expected pattern.83
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Figure 2: The correlation of all labels to each other shows an approximately normal distribution and

balance in the data

Each image is saved in JPG/.jpg format with a size ranging between 35 and 40 kilobytes. These84

images maintain a consistent shape of 640x640 pixels. The corresponding labels for these images85

are stored in a separate file in TXT/.txt format. The file paths for both the images and the labels86

are specified within a file in YAML/.yaml format. As a result, all files collectively occupy a total87

size of 58.2 megabytes. The files are available on Zenodo and linked in Section 4: Usage Notes.88

The dataset offers a wide range of possibilities for diverse tasks, including object localization,89

object classification, object counting, semantic segmentation, and scene understanding. However,90

the dataset’s provided labels and the identifiable damages on the objects make it particularly well-91

suited for tasks related to object detection and quality classification, specifically in identifying92

surface defects often encountered in manufacturing industries.93

2.2 Data Collection94

The data collection was done in a defined procedure. Images were captured with a microcon-95

troller board and a compatible camera. An Arduino UNO was chosen with an OV7670 300KP96
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VGACamera. Arduino embedded systems are widely available and used for prototype purposes.97

They benefit from an active online community helping to lower development challenges [15].98

Moreover, the configuration involves fluorescent light directed toward the objects under inspec-99

tion, with a constant distance between the camera and the objects supported by a tripod. On the100

software side, Python code controls the capturing process. The collection started from single101

objects with different colors, angles, and positions, as well as defects on some objects. Later102

on, multiple objects were placed in one image with the same differences described. Each defect103

is generated by a hammer manually and therefore individual with a varying degree of surface104

damage. This supports the diversity of surface damages that are labeled as defective.105

The annotation of the images is based on the software Roboflow [16]. Features, polygon bounding106

boxes, and labels are provided with this software. Besides, Roboflow is used for auto-orient to107

discard common rotations by metadata and standardize pixel ordering, as well as resizing images108

to a frame of 640x640 pixels. This shape is often suggested to facilitate the convenient use of109

object detection models, such as YOLOv5 [17]. Figure 3a shows an exemplary image before110

annotation and Figure 3b shows the same image after annotation. The purple box indicates the111

valid object, while the red box indicates the defective one. Table 1 shows the corresponding label112

information of Figure 3b. All boxes are applied comprehensively around the relevant objects,113

ensuring that occluded objects are always fully included. Besides, we aimed to minimize the114

spaces between the bounding box borders and the objects to ensure that only the relevant objects115

are enclosed within the box.116

(a) Original image (b) Labeled image

Figure 3: Examplary image of the dataset consisting of two objects with one valid and one defective

instance

Finally, the captured images and labels are stored in Zenodo and saved with a Data Management117

Plan (DMP) created with RDMO [18]. The DMP includes information about metadata, data118

formats, as well as technical insights to enhance scientific reuse within FAIR principles. F-UJI119

scored the resource with a FAIRness of 75 percent.120

3 Object Detection and Quality Classification Showcase121

While the presented dataset provides possibilities to perform various tasks, this section aims122

to demonstrate the dataset’s suitability for object detection and quality classification through123

binary defect detection of the surface damages occurring on the objects. This showcase shall124

be a best practice to learn and facilitate additional exploration. Further, training is conducted125

ing.grid, 2024 6



DATASET DESCRIPTOR Object Detection in Manufacturing

on different dataset sizes to demonstrate performance and its relationship with the amount of126

data used for training. The variation in dataset size is intended to address challenges faced by127

SMEs with limited data. Hence, we first explain the metrics used for that task, then introduce the128

algorithm trained and consequently show its results on the dataset along different dataset sizes.129

3.1 Metrics130

As the task consists of binary defect detection on objects that need to be detected first, several131

metrics need to be used. The object detection is measured by Intersection over Union (IoU), as132

suggested by literature [19]. This metric is based on the ratio of the area of intersection of two133

bounding boxes to the area of union of two bounding boxes as shown in the Formula134

𝐼𝑜𝑈 =
𝐴𝑟𝑒𝑎 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡𝑤𝑜 𝑏𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑏𝑜𝑥𝑒𝑠

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛 𝑜𝑓 𝑡𝑤𝑜 𝑏𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑏𝑜𝑥𝑒𝑠
(1)

Therefore, greater IoU values signify increased overlap and an improved prediction. To eliminate135

redundant boxes encompassing the same object, IoU typically employs Non-Maximum Suppres-136

sion. This method operates on the criterion that predictions with IoU lower than the confidence137

threshold are ignored, while only boxes with IoU values exceeding this threshold are retained.138

Here, the confidence threshold denotes the minimum score at which the model considers a139

prediction to be valid. Furthermore, Precision (P) and Recall (R) as classification metrics are140

applied to measure the accuracy of fault detection within detected objects. Generally, an image141

typically contains a wealth of information, including both relevant and irrelevant objects. To142

clarify this, P is introduced to only indicate relevant ones. It represents the number of objects143

correctly recognized by the object detection model divided by the total number of objects. R is144

also introduced to indicate all the relevant objects. It measures the number of relevant objects145

that were correctly recognized by the model. The mathematical definitions of P and R are shown146

in Formula 2 and Formula 3. True Positive (TP) represents correct detections (IoU ≥ confidence147

threshold), False Positive (FP) represents a wrong detection (IoU < confidence threshold), and148

False Negative (FN) represents a wrong misdetection.149

𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑃 ) = 𝑇 𝑟𝑢𝑒 𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒
𝑇 𝑟𝑢𝑒 𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹 𝑎𝑙𝑠𝑒 𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒

= 𝑇 𝑃
𝑇 𝑃 + 𝐹 𝑃

(2)

𝑅𝑒𝑐𝑎𝑙𝑙(𝑅) = 𝑇 𝑟𝑢𝑒 𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒
𝑇 𝑟𝑢𝑒 𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹 𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

= 𝑇 𝑃
𝑇 𝑃 + 𝐹 𝑁

(3)

P and R offer a trade-off that it is graphically represented in the PR curve by varying the150

classification threshold. The area under this curve gives the average precision per class for the151

model trained. The average of this value from all classes is called meanAverage Precision (mAP),152

which is used to evaluate the performance for object detection and quality classification in this153

showcase as it combines all metrics introduced. The equation is shown in Formula 4.154

𝑚𝐴𝑃 = 1
𝑁

𝑁

∑
𝑖=1

𝐴𝑃𝑖 (4)
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N corresponds to the total number of object classes. mAP has different categories, varying155

in their parameter settings. We select the most common ones mAP@0.5 and mAP@0.5:0.95.156

mAP@0.5 is used across several benchmark challenges on datasets such as Pascal VOC or157

COCO. It interpolates with 101 recall points with (IoU) threshold = 0.5, which means that IoU158

values greater than or equal to 0.5 are considered TP, while values less than 0.5 are considered159

FP predictions. mAP@0.5:0.95 uses the same interpolation method as mAP@0.5, but averages160

the APs obtained from using ten different IoU thresholds (0.5, 0.55, …, 0.95). The introduced161

metrics P, R, mAP@0.5 and mAP@0.5:0.95 measure the performance of the algorithm during162

training and in tests after training in this showcase.163

3.2 Algorithm and Training164

An algorithm of YOLO series is selected as an example real-time object detection algorithm165

commonly used in research and industry. YOLO series object detection algorithms use a one-166

stage neural network to directly complete detection object localization and classification without167

using pre-generated region proposals [20], [21]. They are widely used for their good balance be-168

tween high speed and high accuracy, easy implementation, and low-cost maintenance. YOLOv5,169

proposed by Jocher Glenn [17], is selected as the YOLO version after consideration of com-170

puting resources, layers of the network, model parameters, detection accuracy, inference time,171

deployment ability, and algorithm practicability. The specific model YOLOv5 is used for its172

properties of lightweight and relatively high speed. Since the size of the dataset in this showcase173

is relatively small and the background information is fixed, real-time detection and high accuracy174

can be ensured by YOLOv5s at the same time.175

The training is conducted by also taking smaller sizes of the dataset provided to show the model’s176

performance regarding the number of images used for training. Four different dataset sizes177

are used as shown in Table 2. The sizes of the training datasets are 35, 140, 350, and 1050,178

respectively. The size of the validation and testing set is the same in all four dataset sizes, 300179

and 150 respectively. The algorithm is trained 300 epochs with a batch size of 32 and default180

hyperparameters.181

Training Set Validation Set Testing Set

1st 35 300 150

2nd 140 300 150

3rd 350 300 150

4th 1050 300 150

Table 2: Split of Training set, Validation set, and Testing set for all dataset sizes used

3.3 Evaluation182

As introduced, the results are presented with P, R, mAP@0.5 and mAP@0.5:0.95 for validation183

and testing set of the dataset and visualized in Table 3 and Table 4. The performance correlates184

with the dataset size. As the size increases, so does the value of evaluated metrics, indicating185

an improvement in the models’ performance. Regarding the entire dataset, the development186

model achieves a mAP@0.5 of 0.995 and a mAP@0.5:0.95 of 0.833. The visualized comparison187
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between the size of the dataset can be seen in Figure 4 for the validation data and in Figure 5 for188

the testing data. Despite this, the performance increase remains relatively modest, suggesting189

that even with the smallest dataset, satisfactory performance above 0.95 in mAP@0.5 is achieved.190

This indicates the simplicity of the underlying visual task, as the dataset is intended to be easily191

manageable.192

Class Precision Recall mAP@0.5 mAP@0.5:0.95 Inference Time [ms]

All 0.954 0.952 0.977 0.786

1st Defective 0.961 0.942 0.978 0.776 156.8

Valid 0.947 0.963 0.976 0.796

All 0.992 0.986 0.994 0.818

2nd Defective 0.997 0.978 0.995 0.816 157.8

Valid 0.987 0.994 0.993 0.821

All 0.997 0.996 0.995 0.828

3rd Defective 0.996 0.998 0.995 0.823 156.5

Valid 0.998 0.995 0.995 0.832

All 0.998 0.999 0.995 0.833

4th Defective 0.997 1 0.995 0.828 156.4

Valid 1 0.998 0.995 0.839

Table 3: Precision, Recall, mAP@0.5, mAP@0.5:0.95 and Inference Time in ms for the Validation

Set

Class Precision Recall mAP@0.5 mAP@0.5:0.95 Inference Time [ms]

All 0.965 0.957 0.977 0.809

1st Defective 0.973 0.944 0.978 0.81 188

Valid 0.956 0.971 0.977 0.807

All 0.99 0.984 0.988 0.83

2nd Defective 0.991 0.979 0.987 0.832 157.4

Valid 0.989 0.988 0.989 0.829

All 0.986 0.994 0.995 0.843

3rd Defective 0.979 0.995 0.995 0.842 156.7

Valid 0.992 0.993 0.995 0.844

All 0.998 0.992 0.995 0.854

4th Defective 0.999 0.995 0.995 0.849 159.1

Valid 0.996 0.99 0.995 0.859

Table 4: Precision, Recall, mAP@0.5, mAP@0.5:0.95 and Inference Time in ms for the Testing Set
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Figure 4: mAP@0.5 and mAP@0.5:0.95 metrics of validation set of all four dataset sizes

Figure 5: mAP@0.5 and mAP@0.5:0.95 metrics of testing set of all four dataset sizes

4 Conclusion193

SMEs in the manufacturing sector lag behind their larger counterparts in the adoption of ML194

technologies like object detection. This is influenced by factors including insufficient data, high195

complexity, and a scarcity of tangible examples. We presented a simple low-resolution dataset196

based on plastic bricks with different surface defects to address a typical use case of object197

detection in manufacturing. By simplification of the dataset with low resolution and a limited198

amount of instances, efforts regarding typical challenges of SMEs were addressed. A showcase199

provided with a YOLOv5 model indicated sufficient performance with different metrics.200

Our findings show that maintaining simplicity does not compromise performance, demonstrating201

the effectiveness of straightforward open-source object detection methods and achieving an202

mAP@0.5:0.95 score up to 0.833. These findings were published ensuring FAIR principles and203

achieved an FAIR score of 75 percent in F-UJI. The provided data and YOLO model can be204

reused for learning purposes and establish the groundwork for transferring knowledge to object205

detection tasks with similar surface damages on the objects to inspect. However, it’s important to206

note that the limitation lies in the inability to directly apply such models or data to unrelated tasks.207

The consideration of the specific context is fundamental for the transferability of the presented208

methods. Future research should focus on investigating more universally applicable resources,209
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facilitating direct transfer for use cases at SMEs through interoperable research approaches.210

5 Usage Notes211

The dataset generated for this research is accessible on Zenodo viaDOI (10.5281/zenodo.10731976).212

The dataset is licensed under the Creative Commons Attribution 4.0 International License (CC213

BY 4.0). The developed algorithm is available on RWTH Aachen Gitlab at https://git.rwth-214

aachen.de/zukipro/yolov5_for_plastic_brick_quality_classification and licensed under GNU215

Affero General Public License v3.0.216
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