
�

Date Received:

2022-12-05

Licenses:

This article is licensed under: cb

Keywords:

FAIR, reproducibility, scientific

workflows, tool comparison, workflow

management

Data availability:

Data can be found here:

https://doi.org/10.5281/ze

nodo.7790634

Software availability:

Software can be found here:

https://github.com/BAMrese

arch/NFDI4IngScientificWor

kflowRequirements

RESEARCH ARTICLE

preprints
Evaluation of tools for describing, reproducing and

reusing scientific workflows

Philipp Diercks� 1

Dennis Gläser� 2

Ontje Lünsdorf� 3

Michael Selzer� 4

Bernd Flemisch� 2

Jörg F. Unger� 1

1. Department 7.7 Modeling and Simulation, Bundesanstalt für Materialforschung und -prüfung (BAM),

Berlin.

2. Institut für Wasser- und Umweltsystemmodellierung, University of Stuttgart, Stuttgart.

3. Institut für Vernetzte Energiesysteme, Deutsches Zentrum für Luft- und Raumfahrt, Oldenburg.

4. Institut für Nanotechnologie, Karlsruher Institut für Technologie, Karlsruhe.

Abstract. In the field of computational science and engineering, workflows often entail

the application of various software, for instance, for simulation or pre- and postprocessing.

Typically, these components have to be combined in arbitrarily complex workflows to address

a specific research question. In order for peer researchers to understand, reproduce and

(re)use the findings of a scientific publication, several challenges have to be addressed. For

instance, the employed workflow has to be automated and information on all used software

must be available for a reproduction of the results. Moreover, the results must be traceable

and the workflow documented and readable to allow for external verification and greater trust.

In this paper, existing workflow management systems (WfMSs) are discussed regarding their

suitability for describing, reproducing and reusing scientific workflows. To this end, a set of

general requirements for WfMSs were deduced from user stories that we deem relevant

in the domain of computational science and engineering. On the basis of an exemplary

workflow implementation, publicly hosted at GitHub (https://github.com/BAMresear

ch/NFDI4IngScientificWorkflowRequirements), a selection of different WfMSs is

compared with respect to these requirements, to support fellow scientists in identifying the

WfMSs that best suit their requirements.

1 Introduction1

With increasing volume, complexity and creation speed of scholarly data, humans rely more2

and more on computational support in processing this data. The “FAIR guiding principles for3

scientific data management and stewardship” [42] were introduced in order to improve the ability4

of machines to automatically find and use that data. FAIR comprises the four foundational5

principles “that all research objects should be Findable, Accessible, Interoperable and Reusable6

1

https://doi.org/10.5281/zenodo.7790634
https://doi.org/10.5281/zenodo.7790634
https://github.com/BAMresearch/NFDI4IngScientificWorkflowRequirements
https://github.com/BAMresearch/NFDI4IngScientificWorkflowRequirements
https://github.com/BAMresearch/NFDI4IngScientificWorkflowRequirements
https://orcid.org/0000-0003-4495-4423
https://orcid.org/0000-0001-9646-881X
https://orcid.org/0000-0003-4464-5735
https://orcid.org/0000-0002-9756-646X
https://orcid.org/0000-0001-8188-620X
https://orcid.org/0000-0003-0035-0951
https://github.com/BAMresearch/NFDI4IngScientificWorkflowRequirements
https://github.com/BAMresearch/NFDI4IngScientificWorkflowRequirements


RESEARCH ARTICLE

(FAIR) both for machines and for people”. In giving abstract, high-level and domain-independent7

guidelines, the authors answer the question of what constitutes good data management. However,8

the implementation of these guidelines is still in its infancy, with many challenges not yet9

identified and some of which may not have readily available solutions [31]. Furthermore, efforts10

are made towards an Internet of FAIR Data and Services (IFDS) [17], which requires not only11

the data, but also the tools and (compute) services to be FAIR.12

Data processing is usually not a single task, but in general (and in particular for computational13

simulations) relies on a chain of tools. Thus, to achieve transparency, adaptability and repro-14

ducibility of (computational) research, the FAIR principles must be applied to all components15

of the research process. This includes the tools (i. e. any research software) used to analyze the16

data, but also the scientific workflow itself which describes how the various processes depend17

on each other. In a community-driven effort, the FAIR principles were applied to research18

software and extended to its specific characteristics by the FAIR for Research Software Working19

Group [9]. For a discussion of how the FAIR principles should apply to workflows and workflow20

management systems (WfMSs) we refer to [20].21

In addition, in recent years there has been a tremendous development of different tools (see22

e. g. https://github.com/pditommaso/awesome-pipeline) that aid the definition and23

automation of computational workflows. These WfMSs have great potential in supporting24

the goal above which is further discussed in section 1.1. The key features of WfMSs are also25

highlighted in the context of bioinformatics workflows by [45], which compare several WfMSs26

regarding aspects ranging from portability over scalability to the availability of learning resources.27

Adiscussion of strengths and weaknesses of a selection of tools in the context of material sciences28

is given in a recent work [34].29

In this work, we would like to discuss howWfMSs can contribute to the transparency, adaptability,30

reproducibility and reusability of computational research. Similar to [34, 45], we evaluate a31

selection of WfMSs regarding a set of requirements, taking into account different possible32

scenarios in which WfMSs are employed. In contrast to [34], we consider generic scenarios that33

are not tied to a specific research domain (see section 2), from which we derive requirements34

on WfMSs that we deem relevant in those contexts (see section 3). This leads to a set of35

requirements that overlap with the ones presented in [45], but include more specific aspects of36

workflow definitions and their development process. While [9, 20] discuss properties of FAIR37

research software and workflows on a rather high level, this work focuses on how concrete38

features of WfMSs may contribute to a more FAIR research software landscape. However, with39

the considered requirements, we focus on the aspects reusability and interoperability, since40

findability and accessibility lie outside the responsibilities of a WfMS.41

Several WfMSs are evaluated with respect to the requirements by means of an exemplary42

workflow, which is described in section 4, in addition to the available online documentation (see43

below). The evaluation is presented in section 5, with the aim to support fellow scientists in44

identifying the tools that best suit their requirements. The list of tools selected for comparison45

is subjective and certainly not complete. However, a GitHub repository [16] providing an46

implementation of the exemplary workflow for all tools and a short documentation with a link47

to further information was created, with the aim to continuously add more tools in the future.48

ing.grid, 2023 2

https://github.com/pditommaso/awesome-pipeline


RESEARCH ARTICLE

Furthermore, by demonstrating how the different tools could be used, we would like to encourage49

people to use WfMSs in their daily work.50

1.1 Introduction to workflow management systems51

In this paper, we use the term process to describe a computation, that is, the execution of a52

program to produce output data from input data. A process can be arbitrarily complex, but53

from the point of view of the workflow, it is a single, indivisible step. A workflow describes54

how individual processes relate to each other. Software-driven scientific workflows are often55

characterized by a complex interplay of various pieces of software executed in a particular order.56

The output of one process may serve as input to a subsequent process, which requires them to57

be executed sequentially with a proper mapping of outputs to inputs. Other computations are58

independent of each other and can be executed in parallel. Thus, one of the main tasks of WfMSs59

is the proper and efficient scheduling of the individual processes.60

Figure 1: Schematic representation of software-driven scientific workflows. Note that a workflow as

well as a process may have several inputs and outputs.

As shown in fig. 1, each process in the workflow, just as the workflow itself, takes some input to61

produce output data. A more detailed discussion of the different levels of abstractions related to62

workflows can be found in Griem et al. [21]. The behavior of a process is primarily determined63

by the source code that describes it, but may also be influenced by the interpreters/compilers64

used for translation or the machines used for execution. Moreover, the source code of a process65

may carry dependencies to other software packages such that the behavior of a process possibly66

depends on their versions. We use the term computation environment to collect all those software67

dependencies, that is, interpreters and/or compilers as well as third-party libraries and packages68

ing.grid, 2023 3



RESEARCH ARTICLE

that contribute to the computations carried out in a process. The exact version numbers of all69

involved packages are crucial, as the workflow may not work with newer or older packages, or,70

may produce different results.71

As outlined in [30], WfMSs may be grouped into five classes. First, tools like Galaxy [1],72

KNIME [8], and Pegasus [14] provide a graphical user interface (GUI) to define scientific73

workflows. Thus, no programming skills are required and the WfMS is easily accessible for74

everybody. With the second group, workflows are defined using a set of classes and functions75

for generic programming languages (libraries and packages). This has the advantage that version76

control (e. g. usingGit (https://git-scm.com)) can be employed on the workflow. In addition,77

the tool can be used without a graphical interface, e. g. in a server environment. Examples of78

prominent tools are AiiDA [23, 39], doit [35], Balsam [33], FireWorks [24], SciPipe [28] and79

Guix Workflow Language [46]. Third, tools like Nextflow [15], Snakemake [27], Bpipe [32] and80

Cluster Flow [18] express the workflow using a domain specific language (DSL). A DSL is a81

language tailored to a specific problem. In this context, it offers declarations and statements to82

implement often occurring constructs in workflow definitions, which improves the readability83

and reduces the amount of code. Moreover, the advantages of the second group also apply84

for the third group. In contrast to the definition of the workflow in a programmatic way, the85

fourth group comprises tools like Popper [25] and Argo workflows (https://argoproj.g86

ithub.io/argo-workflows/) which allow to specify the workflow in a purely declarative87

way, by using configuration file formats like YAML [7]. In this case, the workflow specification88

is concise and can be easily understood, but lacks expressiveness compared to the definition89

of the workflow using programming languages. Fifth, there are system-independent workflow90

specification languages like CWL [13] or WDL (https://github.com/openwdl/wdl). These91

define a declarative language standard for describing workflows, which can then be executed by92

a number of different engines like Cromwell [41], Toil [40], and Tibanna [29].93

WfMSs can be used to create, execute and monitor workflows. They can help to achieve94

reproducibility of research results by avoiding manual steps and automating the execution of95

the individual processes in the correct order. More importantly, for a third person to reproduce96

and reuse the workflow, it needs to be portable, that is, executable on any machine. Portability97

can be supported by WfMSs with the integration of package management systems and container98

technologies, which allow them to automatically re-instantiate the compute environment. Another99

advantage of using WfMSs is the increase in transparency through a clear and readable workflow100

specification. Moreover, after completion of the workflow, the tool can help to trace back101

a computed value to its origin, by logging all inputs, outputs and possibly metadata of all102

computations.103

2 User stories104

Starting from user stories that we consider representative for computational science and engi-105

neering, a set of requirements is derived that serves as a basis for the comparison of different106

WfMSs. In particular, a discussion on how the different tools implement these requirements is107

provided.108

Reproducibility, which is key to transparent research, is the main focus of the first user story109

ing.grid, 2023 4

https://git-scm.com
https://argoproj.github.io/argo-workflows/
https://argoproj.github.io/argo-workflows/
https://argoproj.github.io/argo-workflows/
https://github.com/openwdl/wdl


RESEARCH ARTICLE

(see section 2.1). The second user story (see section 2.2) deals with research groups that develop110

workflows in a joint effort where subgroups or individuals work on different components of the111

workflow. Finally, the third user story focuses on computational research that involves generating112

and processing large amounts of data, which poses special demands on how the workflow tools113

organize the data that is created upon workflow execution (see section 2.3).114

2.1 Transparent and reproducible research paper115

As a researcher, I want to share the code for my paper such that others are able to easily reproduce116

my results.117

In this user story, the main objective is to guarantee the reproducibility of computational results118

presented in scientific publications. Here, reproducibility means that a peer researcher is able to119

rerun the workflow on some other machine while obtaining results that are in good agreement120

with those reported in the publication. Mere reproduction could also be achieved without a121

WfMS, e. g. by providing a script that executes the required commands in the right order, but this122

comes with a number of issues that may be solved with a standardized workflow description.123

First of all, reconstructing the logic behind the generation and processing of results directly from124

script code is cumbersome and reduces the transparency of the research, especially for complex125

workflows. Second, it is not straightforward for peer researchers to extract certain processes of a126

workflow from a script and embed them into a different research project, hence the reusability127

aspect is poorly addressed with this solution. Workflow descriptions may provide a remedy to128

both of these issues, provided that each process in the workflow is defined as a unit with a clear129

interface (see section 3.7).130

While the workflow description helps peers to understand the details behind a research project,131

it comes with an overhead on the side of the workflow creator, in particular when using a WfMS132

for the first time. In the prevalent academic climate , but also in industrial (research) settings,133

we therefore think that an important aspect of WfMSs is how easy they are to get started with134

(see section 3.9). Similarly, if the WfMS provides a GUI to visualize and/or define the workflow135

(see section 3.3), no special programming skills are required, which may be preferred due to the136

easy access.137

In the development phase, a workflow is typically run many times until its implementation is138

satisfactory. With a scripted automation, the entire workflow is always executed, even if only one139

process was changed since the last run. Since WfMSs have to know the dependencies between140

processes, this opens up the possibility to identify and select only those parts of a workflow that141

have to be rerun (see section 3.8). Besides this, the WfMS can display to the user which parts142

are currently being executed, which ones have already been up-to-date, and which ones are still143

to be picked (see section 3.2).144

A general issue is that a workflow, or even each process in it, has a specific set of software- and145

possibly hardware-requirements. This makes both reproducibility and reusability difficult to146

achieve, especially over longer time scales, unless the computation environment in which the147

original study was carried out is documented in a way that allows for a later re-instantiation.148

The use of package managers that can export a given environment into a machine-readable149

ing.grid, 2023 5



RESEARCH ARTICLE

format from which they can then recreate that environment at a later time, may help to overcome150

this issue. Another promising approach is to rely on container technologies. WfMSs have the151

potential to automate the re-instantiation of a computation environment via integration of either152

one of the above-mentioned technologies (see section 3.5). This makes it much easier for peers153

to reproduce and/or reuse parts of a published workflow.154

2.2 Joint research (group)155

As part of a research group, I want to be able to interconnect and reuse components of several156

different workflows so that everyone may benefit from their colleagues’work.157

Similar to the previous user story, the output of such a workflow could be a scientific paper.158

However, this user story explicitly considers interdisciplinary workflows in which the reusability159

of individual components/modules is essential. Each process in the workflow may require a160

different expertise and hence modularity and a common framework is necessary for an efficient161

collaboration.162

Many of the difficulties discussed in the previous user story are shared in a joint research project.163

However, the collaborative effort in which the workflow description and those of its components164

are developed promotes the importance of clear interfaces (see section 3.7) to ease communication165

and an intuitive dependency handling mechanism (see section 3.5).166

As mentioned in section 2.1, a GUI can help to increase the usability of a workflow for non-167

programmers. However, in this user story it is important that the workflow definition is available168

in a human-readable and manually editable format (see section 3.10). This facilitates version169

control and the code review process as an essential aspect of teamwork.170

Another challenge here is that such workflows often consist of heterogeneous models of dif-171

ferent complexity, such as large computations requiring high-performance computing (HPC),172

preprocessing of experimental data or postprocessing analyses. Due to this heterogeneity, it may173

be beneficial to outsource computationally demanding tasks to HPC systems, while executing174

cheaper tasks locally (see section 3.1). Workflows with such computationally expensive tasks175

can also strongly benefit from effective caching mechanisms and the reuse of cached results176

wherever possible (see section 3.8).177

Finally, support for a hierarchical embedding of sub-workflows (possibly published and ver-178

sioned) in another workflow is of great benefit as this allows for an easy integration of improve-179

ments made in the sub-workflows by other developers (see section 3.6).180

2.3 Complex hierarchical computations181

As a materials scientist, I want to be able to automate and manage complex workflows so I can182

keep track of all associated data.183

Workflows in which screening or parameter sweeps are required typically involve running a large184

number of simulations. Moreover, these workflows are often very complex with many levels of185

dependencies between the individual tasks. Good data management that provides access to the186

full provenance graph of all data can help to retain an overview over the large amounts of data187

ing.grid, 2023 6



RESEARCH ARTICLE

produced by such workflows (see section 3.4). For instance, the data management could be such188

that desired information may be efficiently extracted via query mechanisms.189

Another aspect regarding high-throughput computational screening is that the same computations190

are carried out for many inputs (material structures) and the same workflow might be used for a191

number of studies on varying input data. Here, a platform for publishing and sharing workflows192

(see section 3.11) with the community can help to standardize and assure the quality of the193

workflow. Furthermore, the findability and accessibility of workflows are increased, thereby194

contributing to open science.195

Due to the large amount of computationally demanding tasks in such workflows, it is helpful196

if some computations can be outsourced to HPC systems (see section 3.1) with a clean way of197

querying the current status during the typically long execution times (see section 3.2).198

3 Specific requirements on workflow management systems199

The user stories described above allow us to identify 11 requirements on WfMSs. Some of200

these requirements concern the interaction with a WfMS from the perspective of a user of a201

workflow, while others are related to the creation of a workflow definition and its readability or202

portability. While portability is key to reproducible research, readability is an important aspect203

of transparency. However, an easy and intuitive way of interacting with a WfMS is crucial for204

workflows to be reused at all. Finally, reusability is enhanced if the workflow, or parts of it, can205

be embedded into another workflow in a possibly different context. In the following, we will206

describe the requirements in detail, as they will serve as evaluation criteria for the individual207

WfMSs discussed in section 5.208

3.1 Support for job scheduling system209

As already mentioned, the main task of a WfMS is to automatically execute the processes of a210

workflow in the correct order such that the dependencies between them are satisfied. However,211

processes that do not depend on each other may be executed in parallel in order to speed up the212

overall computation time. This requirement focuses on the ability of a WfMS to distribute the213

computations on available resources. Job scheduling systems like e. g. Slurm (also commonly214

referred to as batch scheduling or batch systems) are often used to manage computations to be215

run and their resource requirements (number of nodes, CPUs, memory, runtime, etc.). Therefore,216

it is of great benefit if WfMSs support the integration of widely-used batch systems such that217

users can specify and also observe the used resources alongside other computations that were218

submitted to their batch system in use. Besides this, this requirement captures the ability of a219

WfMS to outsource computations to a remote machine, e. g. a HPC cluster or cloud. In this220

sense, this requirement is crucial for workflows that require HPC resources to be reproducible.221

For traditional HPC cluster systems it is usually necessary to transfer input and output data222

between the local system and the cluster system. This can be done using the secure shell protocol223

(SSH) and a WfMS may provide the automated transfer of a job’s associated data. Ideally, the224

workflow can be executed anywhere without changing the workflow definition itself, but only225

the runtime arguments or a configuration file. The fulfillment of this requirement is evaluated by226

the following criteria:227

ing.grid, 2023 7



RESEARCH ARTICLE

The workflow system supports the execution of the workflow on the local system.228

The workflow system supports the execution of the workflow on the local system via229

a batch system.230

The workflow system supports the execution of the workflow via a batch system on231

the local or a remote system.232

3.2 Monitoring233

Depending on the application, the execution of scientific workflows can be very time-consuming.234

This can be caused by compute-intensive processes such as numerical simulations, or by a235

large number of short processes that are executed many times. In both cases, it can be very236

helpful to be able to query the state of the execution, that is, which processes have been finished,237

which processes are currently being executed, and which are still pending. A trivial way of such238

monitoring would be, for instance, when the workflow is started in a terminal which is kept239

open to inspect the output written by the workflow system and the running processes. However,240

ideally, the workflow system allows for submission of the workflow in the form of a process241

running in the background, while still providing means to monitor the state of the execution. For242

this requirement, two criteria are distinguished:243

The only way to monitor the workflow is to watch the console output.244

The workflow system provides a way to query the execution status at any time.245

3.3 Graphical user interface246

Independent of a particular execution of the workflow, the workflow system may provide247

facilities to visualize the graph of the workflow, indicating the mutual dependencies of the248

individual processes and the direction of the flow of data. One can think of this graph as the249

template for the data provenance graph. This visualization can help in conveying the logic250

behind a particular workflow, making it easier for other researchers to understand and possibly251

incorporate it into their own research. The latter requires that the workflow system is able252

to handle hierarchical workflows, that is, workflows that contain one or more sub-workflows253

as processes (see section 3.6). Beyond a mere visualization, a GUI may allow for visually254

connecting different workflows into a new one by means of drag & drop. We evaluate the255

features of a graphical user interface by means of the following three criteria:256

The workflow system provides no means to visualize the workflow257

The workflow system or third-party tools allow to visualize the workflow definition258

The workflow system or third-party tools provide a GUI that enables users to graphi-259

cally create workflows260

3.4 Data provenance261

The data provenance graph contains, for a particular execution of the workflow, which data and262

processes participated in the generation of a particular piece of data. Thus, this is closely related263

to the workflow itself, which can be thought of as a template for how that data generation should264

ing.grid, 2023 8



RESEARCH ARTICLE

take place. However, a concrete realization of the workflow must contain information on the265

exact input data, parameters and intermediate results, possibly along with meta information on266

the person that executed the workflow, the involved software, the compute resources used and267

the time it took to finish. Collection of all relevant information, its storage in machine-readable268

formats and subsequent publication alongside the data can be very useful for future researchers269

in order to understand how exactly the data was produced, thereby increasing the transparency of270

the workflow and the produced data. Ideally, the workflow system has the means to automatically271

collect this information upon workflow execution, which we evaluate using the following criteria:272

The workflow system provides no means to export relevant information from a partic-273

ular execution274

The workflow system stores all results (also intermediate) together with provenance275

metadata about how they were produced276

3.5 Compute environment277

In order to guarantee interoperability and reproducibility of scientific workflows, the workflows278

need to be executable by others. Here, the re-instantiation of the compute environment (instal-279

lation of libraries or source code) poses the main challenge. Therefore, it is of great use if the280

WfMS is able to automatically deploy the software stack (on a per workflow or per process basis)281

by means of a package manager (e. g. conda https://conda.io/) or that running processes in282

a container (e. g. Docker https://www.docker.com, Apptainer https://apptainer.org283

(formerly Singularity)) is integrated in the tool. The automatic deployment of the software stack284

facilitates the execution of the workflow, and thus, greatly enhances its reproducibility. However,285

it does not (always) enable reusage, that is, the associated software can be understood, modified,286

built upon or incorporated into other software [9]. For instance, if a container image is used,287

it is important that the container build recipe (e. g. Dockerfile) is provided. This increases the288

reusability as it documents how a productive environment, suitable to execute the given workflow289

or process, can be set up. The author of the workflow, however, is deemed to be responsible for290

the documentation of the compute environment. For this requirement, we define the following291

evaluation criteria:292

The automatic instantiation of the compute environment is not intended.293

The workflow system allows the automatic instantiation of the compute environment294

on a per workflow basis.295

The workflow system allows the automatic instantiation of the compute environment296

on a per process basis.297

3.6 Hierarchical composition of workflows298

Aworkflow consists of a mapping between a set of inputs (could be empty) and a set of outputs,299

whereas in between a number of processes are performed. Connecting the output of one workflow300

to the input of another workflow results in a new, longer workflow. This is particularly relevant301

in situations where multiple people share a common set of procedures (e. g. common pre- and302

postprocessing routines). In this case, copying the preprocessing workflow into another one is303

ing.grid, 2023 9

https://conda.io/
https://www.docker.com
https://apptainer.org


RESEARCH ARTICLE

certainly always possible, but does not allow to jointly perform modifications and work with304

different versions. Moreover, a composition might also require to define separate compute305

environments for each sub-workflow (e.g. using Docker/singularity or conda). Executing all306

sub-workflows in the same environment might not be possible because each sub-workflow might307

use different tools or even the same tools but with different versions (e. g. python2 vs. python3).308

Thus, WfMSs that can incorporate other workflows, possibly executed in a different compute309

environment, increase the reusability of a workflow substantially. This promotes the importance310

of supporting heterogeneous compute environments, which is reflected in the evaluation criteria311

for this requirement:312

The workflow system does not allow the composition of workflows.313

The workflow system allows to embed a workflow into another one for a single314

compute environment (homogeneous composition).315

The workflow system allows to embed a workflow into another one for arbitrary many316

(on a per process basis) compute environments (hierarchical composition).317

3.7 Interfaces318

In a traditional file-based pipeline, the output files produced by one process are used as inputs to319

a subsequent process. However, it is often more convenient to pass non-file output (e. g. float or320

integer values) directly from one process to another without the creation of intermediate files. In321

this case, it is desirable that the WfMS is able to check the validity of the data (e. g. the correct322

data type) to be processed. Furthermore, this defines the interface for a process more clearly and323

makes it easier for someone else to understand how to use, adapt or extend the workflow/process.324

In contrast, in a file-based pipeline, this is usually not the case since a dependency in form of325

a file does not give information about the type of data contained in that file. For the sake of326

transparency and reusability, it is beneficial if a WfMS supports the definition of strongly-typed327

process interfaces. Type-checking the workflow definition before execution can also help to328

avoid unnecessary computations with erroneous workflows that attempt to transfer data with329

incompatible types. We distinguish these different types of interfaces by the following criteria:330

The workflow system is purely file-based and does not define interface formats.331

The workflow system allows for passing file and non-file arguments between processes.332

The workflow system allows for defining strongly-typed process interfaces, supporting333

both file and non-file arguments.334

3.8 Up-to-dateness335

There are different areas for the application of workflows. On the one hand, people might use336

a workflow to define a single piece of reproducible code that, when executed, always returns337

the same result. Based on that, they might start a large quantity of different jobs and use the338

workflow system to perform this task. Another area of application is the constant development339

within the workflow (e.g. exchanging processes, varying parameters or even modifying the340

source code of a process) until a satisfactory result is obtained. The two scenarios require a341

ing.grid, 2023 10



RESEARCH ARTICLE

slightly different behavior of the workflow system. In the first scenario, all runs should be kept342

in the data provenance graph with a documentation of how each result instance has been obtained343

(e.g. by always documenting the codes, parameters, and processes). If identical runs (identical344

inputs and processes should result in the same output) are detected, a recomputation should be345

avoided and the original output should be linked in the data provenance graph. The benefit of346

this behavior certainly depends on the ratio between the computation time for a single process347

compared to the overhead to query the data base.348

However, when changing the processes (e.g. coding a new time integration scheme or a new349

constitutive model), the workflow system should rather behave like a build system (such as make)350

- only recomputing the steps that are changed or that depend on these changes. In particular for351

complex problems, this allows to work with complex dependencies without manually triggering352

computations and results in automatically recomputing only the relevant parts. An example is a353

paper with multiple figures where each is a result of complex simulations that in itself depend on354

a set of general modules developed in the paper. The “erroneous” runs are usually not interesting355

and should be overwritten.356

How this is handled varies between the tools, yielding the following evaluation criteria:357

R The complete workflow is always Recomputed.358

L A new entry in the data provenance graph is created which Links the previous result359

(without the need to recompute already existing results).360

U Only the parts are recreated (Updated) that are not up-to-date. This usually reduces the361

overhead to store multiple instances of the workflow, but at the same time also prevents -362

without additional effort (e.g. when executing in different folders) computing multiple363

instances of the same workflow.364

3.9 Ease of first use365

Although this is not a requirement per-se, it is beneficial if the workflow system has an intuitive366

syntax/interface and little work is required for a new user to define a first workflow. Research367

applications typically have a high intrinsic complexity, and therefore, the complexity added by the368

workflow management should be as small as possible. We note that this requirement is subjective369

and depends on the experience and skills of the user. Nevertheless, from the perspective of370

engineers and self-taught programmers, the following criteria are defined, considering aspects371

such as readability, expressiveness and knowledge of the tool:372

difficult: Extensive knowledge of the tool and its design concepts as well as advanced373

programming skills are required to define a first workflow.374

intermediate: Extensive knowledge of the tool and its design concepts and only basic375

programming skills are required to define a first workflow.376

easy: Only basic programming skills are required to define a first workflow.377

ing.grid, 2023 11



RESEARCH ARTICLE

3.10 Manually editable workflow definition378

While it can be beneficial to create and edit workflows using a GUI (see section 3.3), it may be379

important that the resulting workflow description is given in a human-readable format. This380

does not solely mean that the definition should be a text file, but also that the structure (e. g.381

indentation) and the naming are comprehensive. This facilitates version-controlling with git,382

and in particular the code review process. This increases the transparency of a workflow, and383

moreover, this does not force all users and/or developers to rely on the GUI. Evaluation criteria:384

The workflow description is a binary file.385

The workflow description is a text file but hard to interpret by humans.386

The workflow description is a fully human-readable file format.387

3.11 Platform for publishing and sharing workflows388

The benefit of a workflow system is already significant when using it for individual research389

such as the development of an individual’s paper or reproducing the paper that someone else has390

written, when their data processing pipeline is fully reproducible, documented and published.391

However, the benefit can be even more increased if people are able to jointly work on (sub-392

)workflows together; particularly when a hierarchical workflow system is used. Even though393

workflows can easily be shared together with the work (e.g. in a repository), it might be beneficial394

to provide a platform that allows to publish documented workflows with a search and versioning395

functionality. This feature is not part of the requirement matrix to compare the different tools,396

but we consider a documentation of these platforms in the subsequent section as a good starting397

point for further research (exchange).398

4 Exemplary workflow399

A simple exemplary workflow was defined in order to analyze and evaluate the different WfMSs400

with respect to the requirements stated in section 3. This example is considered to be representa-401

tive for many problems simulating physical processes in engineering science using numerical402

discretization techniques. It consists of six steps, as shown in fig. 2:403

1. generation of a computational mesh (Gmsh)404

2. mesh format conversion (MeshIO)405

3. numerical simulation (FEniCS)406

4. post-processing of the simulation results (ParaView)407

5. preparation of macro definitions (Python)408

6. compilation of a paper into a .pdf file using the simulation results (Tectonic)409

The workflow starts from a given geometry on which the simulation should be carried out and410

generates a computational mesh in the first step using Gmsh [19]. Here, the user can specify the411

size of the computational domain by a float value domain_size. The resulting mesh file format412

is not supported by FEniCS [4], which is the software that we are using for the simulation carried413

ing.grid, 2023 12



RESEARCH ARTICLE

Figure 2: Task dependency graph of the exemplary workflow. Mapping of input and output data is

indicated with black arrows with solid lines. A dashed line refers to non-file input or output

(parameters). Here, red color is used to distinguish user input from automatic data transfer.

out in the third step. Therefore, we convert the mesh file in the second step of the workflow from414

.msh to .xdmf using the python package MeshIO [36]. The simulation step yields result files in415

VTK file format [37] and returns the number of degrees of freedom used by the simulation as416

an integer value num_dofs. The VTK files are further processed using the python application417

programming interface (API) of ParaView [2], which yields the data of a plot-over-line of the418

numerical solution across the domain in .csv file format. This data, together with the values for419

the domain size and the number of degrees of freedom, is inserted into the paper and compiled420

into a .pdf file using the LATEX engine Tectonic [43] in the final step of the workflow.421

Most steps transfer data among each other via files, but we intentionally built in the transfer of422

the number of degrees of freedom as an integer value to check how well such a situation can be423

handled by the tools. Example implementations of the exemplary workflow for various tools are424

available in a public repository [16].425

5 Tool comparison426

In this section, the selected WfMSs and their most important features are described and set in427

relation to the requirements defined in section 3. We note that to the best of our knowledge,428

existing add-on packages to the individual WfMSs are as well considered. As mentioned in the429

introduction, a large number of WfMSs exist, and the ones selected in this work represent only a430

small fraction of them. The considered WfMSs were selected on the basis of their popularity431

within the authors’ communities, however, this has no implications on the quality of WfMSs432

ing.grid, 2023 13



RESEARCH ARTICLE

not considered in this work. As mentioned, we also plan to include implementations of the433

exemplary workflow with further WfMSs in the online documentation in the future.434

5.1 AiiDA435

AiiDA [23, 39], the automated interactive infrastructure and database for computational science,436

is an open source Python infrastructure. With AiiDA, workflows are written in the Python437

programming language and managed and executed using the associated command line interface438

“verdi”.439

AiiDA was designed for use cases that are more focused on running heavy simulation codes440

on heterogeneous compute hardware. Therefore, one of the key features of AiiDA is the HPC441

interface. It supports the execution of (sub-) workflows on any machine and most resource442

managers are integrated. In case of remote computing resources, any data transfer, retrieval and443

storing of the results in the database or status checking is handled by the AiiDA daemon process.444

Another key feature is AiiDA’s workflow writing system which provides strongly typed interfaces445

and allows for easy composition and reuse of workflows. Moreover, AiiDA automatically keeps446

track of all inputs, outputs and metadata of all calculations, which can be exported in the form of447

provenance graphs.448

AiiDA’s workflow system enables to easily compose workflows, but a general challenge seems449

to be the management of the compute environment by the user. For external codes that do not450

run natively in Python the implementation of so-called plugins is required. The plugin instructs451

AiiDA how to run that code and might also contain (among other things) new data types or452

parsers that are necessary, for instance, to validate the calculated results before storing them453

in the database. Maintaining the plugin poses an additional overhead if the application code454

changes frequently during development of the workflow. Moreover, the user has to take care of455

the installation of the external code on the target computer.456

However, since AiiDA version 2.1 it is possible to run code inside containers together with457

any existing plugin for that code. This mitigates the issue of the manual installation of the458

external code, but still requires a suitable plugin. Another benefit is that the information about the459

compute environment is stored in the database as well. At the time of writing, the containerization460

technologies Docker, Singularity https://singularity-docs.readthedocs.io/en/late461

st/ and Sarus https://sarus.readthedocs.io/en/stable/ are supported.462

In the special case of FEniCS (see section 4), which can be used to solve partial differential463

equations and therefore covers a wide spectrum of applications, it is very difficult to define464

a general plugin interface which covers all models. We note that due to this use case, which465

is rather different from the use cases that AiiDA was designed for, the implementation of the466

exemplary workflow (see section 4) uses “aiida-shell” [22], an extension to the AiiDA core467

package which makes running shell commands easy. While this is convenient to get a workflow468

running quickly, this leads to an undefined process interface since this was the purpose of the469

aforementioned plugin for an external code. Considering the points above, compared to the other470

tools, the learning curve with AiiDA is fairly steep.471

In contrast to file-based workflow management systems, AiiDA defines data types for any data472

ing.grid, 2023 14

https://singularity-docs.readthedocs.io/en/latest/
https://singularity-docs.readthedocs.io/en/latest/
https://singularity-docs.readthedocs.io/en/latest/
https://sarus.readthedocs.io/en/stable/


RESEARCH ARTICLE

that should be stored in a database. Consequently, non-file based inputs are well defined, but this473

is not necessarily the case for file data. The reason for the choice of a database is that it allows474

to query all stored data, and thus, enables powerful data analyses. For file-based workflows this475

is difficult to reproduce, especially for large amounts of data.476

In terms of the requirements defined in section 3, AiiDA’s strong points are execution, monitoring477

and provenance. Due to the possibility to export provenance graphs, also level two of the478

requirement graphical user interface is reached. Lastly, caching can be enabled in AiiDA to save479

computation time. Caching in AiiDA means, that the database will be searched for a calculation480

of the same hash and if this is the case, the same outputs are reused.481

5.2 Common Workflow Language482

“Common Workflow Language (CWL) [5] is an open standard for describing how to run command483

line tools and connect them to create workflows” (https://www.commonwl.org/). One484

benefit of it being a standard is that workflows expressed in CWL do not have to be executed by a485

particular workflow engine, but can be run by any engine that is able to support the CWL standard.486

In fact, there exist a number of workflow engines that support CWLworkflows, e. g. the reference487

implementation cwltool (https://github.com/common-workflow-language/cwltool),488

Toil [40] or StreamFlow [10]. Note that so far we have tested our implementation only with489

cwltool, however, in the evaluation we include all engines that support the CWL standard. That490

is, in this work we consider that CWL fulfills a specific requirement if there exists an engine that491

fulfills the requirement upon execution of a workflow written in CWL.492

CWL was designed with a focus on data analysis using command line programs. To create a493

workflow, each of the command line programs is “wrapped” in a CWL description, defining what494

inputs are needed, what outputs are produced and how to call the underlying program. Typically,495

this step also reduces the possibly large number of options of the underlying command line tool496

to a few options or inputs that are relevant for the particular task of the workflow. In a workflow,497

the wrapped command line tools can be defined as individual processes, and the outputs of498

one process can be mapped to the inputs of other processes. This information is enough for499

the interpreter to build up the dependency graph, and processes that do not depend on each500

other may be executed in parallel. A process can also be another workflow, thus, hierarchical501

workflow composition is possible. Moreover, there exist workflow engines (e. g. Toil [40] or502

StreamFlow [10]) for CWL that support using job managers, for instance, Slurm [47].503

The CWL standard also provides means to specify the software requirements of a process. For504

instance, one can provide the URL of a Docker image or Docker file to be used for the execution505

of a process. In case of the latter, the image is automatically built from the provided Docker file,506

which itself contains the information on all required software dependencies. Besides this, the507

CWL standard contains language features that allow listing software dependencies directly in508

the description of a workflow or process, and workflow engines may automatically make these509

software packages available upon execution. As one example, the current release of cwltool510

supports the definition of software requirements in the form of e. g. Conda packages that are then511

automatically installed when the workflow is run (see e. g. our implementation and the respective512

pipelines at [16]).513

ing.grid, 2023 15

https://www.commonwl.org/
https://github.com/common-workflow-language/cwltool


RESEARCH ARTICLE

In contrast to workflow engines that operate within a particular programming language, the514

transfer of data from one process to another cannot occur directly via memory with CWL. For515

instance, if the result of a process is an integer value, this value has to be read from a file produced516

by the process, or, from its console output. However, this does not have to be done in a separate517

process or by again wrapping the command line tool inside some script, since CWL supports the518

definition of inline JavaScript code that is executed by the interpreter. This allows retrieving, for519

instance, integer or floating point return values from a process with a small piece of code.520

CWL requires the types of all inputs and outputs to be specified, which has the benefit that the521

interpreter can do type checks before the execution of the workflow. A variety of primitive522

types, as well as arrays, files or directories, are available. Files can refer to local as well as523

online resources, and in the case of the latter, resources are automatically fetched and used upon524

workflow execution.525

There exist a variety of tools built around the CWL standard, such as the Rabix Composer (https:526

//rabix.io/) for visualizing and composing workflows in a GUI. Besides that and as mentioned527

before, there are several workflow engines that support CWL and some of which provide extra528

features. For instance, cwltool allows for tracking provenance information of individual workflow529

runs. However, to the best of our knowledge, there exists no tool that automatically checks which530

results are up-to-date and do not have to be reproduced (see section 3.8).531

The CWL standard allows to specify the format of an input or output file by means of an IRI532

(Internationalized Resource Identifier) that points to online-available resource where the file533

format is defined. For processes whose output files are passed to the inputs of subsequent jobs,534

the workflow engine can use this information to check if the formats match. To the best of our535

knowledge, cwltool does so by verifying that the IRIs are identical, or performs further reasoning536

in case the IRIs point to classes in ontologies (see, for instance, the class for the JSON file format537

in the EDAM ontology at edamontology.org/format_3464). Such reasoning can make use of538

defined relationships between classes of the ontology to determine file format compatibility and539

thereby contribute to the requirement process interfaces. For more information on file format540

specifications in CWL see commonwl.org/user_guide/topics/file-formats.html.541

5.3 doit542

“doit comes from the idea of bringing the power of build-tools to execute any kind of task” [35].543

The automation tool doit is written in the Python programming language. In contrast to systems544

which offer a GUI, knowledge of the programming language is required. However, it is not545

required to learn an additional API since task metadata is returned as a Python dictionary.546

Therefore, we consider this as very easy to get started quickly.547

With doit, any shell command available on the system or python code can be executed. This548

also includes the execution of processes on a remote machine, although all necessary steps (e. g.549

connecting to the remote via SSH) need to be defined by the user. In general, such behavior550

as described in section 3.1 is possible, but it is not a built-in feature of doit. Also, doit does551

not intend to provide the compute environment. Therefore, while in general the composition of552

workflows (see section 3.6) is easily possible via python imports, this only works for a single553

environment. The status of the execution can be monitored via the console. Here, doit will skip554

ing.grid, 2023 16

https://rabix.io/
https://rabix.io/
https://rabix.io/
http://edamontology.org/format_3464
https://www.commonwl.org/user_guide/topics/file-formats.html


RESEARCH ARTICLE

the execution of processes which are up-to-date and would produce the same result of a previous555

execution. To determine the correct order in which processes should be executed, doit also556

creates a directed acyclic graph (DAG) which could be used to visualize dependencies between557

processes using “doit-graph” (https://github.com/pydoit/doit-graph), an extension to558

doit. For each run (specific instance of the workflow), doit will save the results of each process559

in a database. However, the tool does not provide control over what is stored in the database.560

On the one hand, doit allows to pass results of one process as input to another process directly,561

without creating intermediate files, so it is not purely file-based. On the other hand, the interface562

for non-file based inputs does not define the data type.563

5.4 Guix Workflow Language564

The Guix Workflow Language (GWL) [46] is an extension to the open source package manager565

GNU Guix [12]. GWL leverages several features from Guix, chief among these is the compute566

environment management. Like Guix, GWL only supports GNU/Linux systems.567

GWL can automatically construct an execution graph from the workflow process input/output568

dependencies but also allows a manual specification. Support for HPC schedulers via DRMAA1
569

is also available.570

GWL doesn’t provide a graphical user interface, interactions are carried out using a command-line571

interface in a text terminal. Monitoring is also only available in the form of simple terminal572

output.573

There is support to generate a GraphViz (see e. g. https://graphviz.org) description of the574

workflow, which allows basic visualization of a workflow. Although not conveniently exposed2,575

GWL has a noteworthy unique feature inherited from Guix: precise software provenance tracking.576

Guix contains complete build instructions for every package (including their history through git),577

which enables accounting of source code and the build process, like for example compile options,578

of all tools used in the workflow. Integrity of this information is ensured through cryptographic579

hash functions. This information can be used to construct data provenance graphs with a high580

level of integrity (basically all userspace code of the compute environment can be accounted581

for [11]).582

GWL uses Guix to setup compute environments for workflow processes. Each process is583

executed in an isolated3 compute environment in which only specified software packages are584

available. This approach minimizes (accidential) side-effects from system software packages585

and improves workflow reproducibility. Interoperability also benefits from this approach, since586

a Guix installation is the only requirement to execute a workflow on another machine. As Guix587

provides build instructions for all software packages, it should be easily possible to recreate588

compute environments in the future, even if the originally compiled binaries have been deprecated589

in the meanwhile (see [3] for a discussion about long-term reproducibility).590

1. Distributed Resource Management Application API https://www.drmaa.org

2. GWL doesn’t provide a command to export provenance graphs in any way, instead Guix needs to be queried for build

instruction, dependency graphs and similar provenance information of a workflows software packages

3. By default, lightweight isolation is setup by limiting the PATH environment variable to the compute environment.

Stronger isolation via Linux containers is also optionally available.

ing.grid, 2023 17

https://github.com/pydoit/doit-graph
https://graphviz.org
https://www.drmaa.org


RESEARCH ARTICLE

Composition of workflows is possible, workflows can be imported into other workflows. Com-591

position happens either by extracting individual processes (repurposing them in a new workflow)592

or by appending new processes onto the existing workflow processes.593

GWL relies exclusively on files as interface to workflow processes. There’s no support to594

exchange data on other channels, as workflow processes are executed in isolated environments.595

Like other WfMSs, GWL caches the result of a workflow process using the hash of its input data.596

If a cached result for the input hash value exists, the workflow processes execution is skipped.597

GWL is written in the Scheme [38] implementation GNU Guile [44], but in addition to Scheme,598

workflows can also be defined in wisp [6], a variant of Scheme with significant whitespace 4.599

wisp syntax thus resembles Python, which is expected to flatten the learning curve a bit for600

scientific audience. However, error messages are very hard to read without any background in601

Scheme. On first use, GWL will be very difficult in general. This problem is acknowledged by602

the GWL authors and might be subject to improvements in the future.603

As both wisp and Scheme code is almost free of syntactic noise in general, workflows are almost604

self-describing and easily human-readable.605

In summary, GWL provides a very interesting and sound set of features especially for repro-606

ducibility and interoperability. These features come at the cost of a Guix installation, which607

requires administrator privileges. The workflow language is concise and expressive, but error608

messages are hard to read. At the current stage, GWL can only be recommended to experienced609

scheme programmers or to specialists with high requirements on software reproducibility and610

integrity.611

5.5 Nextflow and Snakemake612

With Nextflow [15] and Snakemake [30], the workflow is defined using a DSL which is an613

extension to a generic programming language (Groovy for Nextflow and Python for Snakemake).614

Moreover, Nextflow and Snakemake also allow to use the underlying programming language615

to generate metadata programmatically. Thus, authoring scientific workflows with Nextflow or616

Snakemake is very easy.617

The process to be executed is usually a shell command or an external script. The integration618

with various scripting languages is an import feature of Snakemake as well as Nextflow, which619

encourages readable modular code for downstream plotting and summary tasks. Also boilerplate620

code for command line interfaces (CLIs) in external scripts can be avoided. Another feature of621

Snakemake is the integration of Jupyter notebooks, which can be used to interactively develop622

components of the workflow.623

Both tools implement a CLI to manage and run workflows. By default, the status of the execution624

is monitored via the console. With Nextflow, it is possible to monitor the status of the execution625

via a weblog. Snakemake supports an external server to monitor the progress of submitted626

workflows.627

4. GWL is not a workflow language in the strict sense. At its core, it is a Scheme library that defines functions and objects

for workflow composition (like processes, inputs, outputs, etc.). It allows workflows to be defined in both Scheme and

wisp.

ing.grid, 2023 18



RESEARCH ARTICLE

With regard to the execution of the workflow (section 3.1), the user can easily run the workflow628

on the local machine and the submission via a resource manager (e. g. Slurm, Torque) is integrated.629

Therefore, individual process resources can be easily defined with these tools if the workflow is630

submitted on a system where a resource manager is installed, i. e. on a traditional HPC cluster631

system. Despite this, only level two of the defined criteria is met for Nextflow, since the execution632

of the workflow on a remote machine and the accompanied transfer of data is not handled by the633

tool. For Snakemake, if the CLI option “default-remote-provider” is used, all input and output634

files are automatically down- and uploaded to the defined remote storage, such that no workflow635

modification is necessary.636

The requirement up-to-dateness is handled differently by Nextflow and Snakemake. By default,637

Nextflow recomputes the complete workflow, but with a single command-line option existing638

results are retrieved from the cache and linked such that a re-execution is not required. In639

this case, Nextflow allows storing multiple instances of the same workflow upon variation of a640

configuration parameter. Snakemake will behave like a build tool in this context and skip the641

re-execution of processes whose targets already exist and update any process whose dependencies642

have changed.643

A strong point of Nextflow and Snakemake is the integration of the conda package management644

system and container technologies like Docker. For example, the compute environment can be645

defined for each process based on a conda environment specification file or a certain Docker646

image. Upon execution of the workflow, the specified compute environment is re-instantiated647

automatically by the WfMS, making it very easy to reproduce results of or built upon existing648

workflows. Furthermore, since the tool is able to deploy the software stack on a per process649

basis, the composition of hierarchical workflows as outlined in section 3.6 is possible.650

Similar to doit, both tools do not provide a GUI to graphically create and modify workflows.651

However, a visualization of the workflow, i. e. a dependency graph of the processes, can be652

exported. Moreover, it is possible to export extensive reports detailing the provenance of the653

generated data.654

Nextflow and Snakemake can also be regarded as file-based workflow management systems.655

Therefore, interface formats, i. e. class structures or types of the parameters passed from one656

process to the subsequent one, are not clearly defined.657

5.6 Evaluation matrix658

The evaluation of the WfMSs provided in section 5 in terms of the requirements described659

in section 3 on the example of the workflow outlined in section 4 yields the evaluation matrix660

depicted in table 1.661

6 Summary662

In this work, six differentWfMSs (AiiDA,CWL, doit,GWL,Nextflow and Snakemake) are studied.663

Their performance is evaluated based on a set of requirements derived from three typical user664

stories in the field of computational science and engineering. On the one hand, the user stories665

are focusing on facilitating the development process, and on the other hand on the possibility of666

ing.grid, 2023 19



RESEARCH ARTICLE

Table 1: Evaluation of the considered workflow management systems.

Requirement Workflow Management System

AiiDA CWL doit GWL Nextflow Snake-

make

Job scheduling system

Monitoring

Graphical user interface

Provenance

Compute environment

Composition

Process interfaces

Up-to-dateness L R U U L U

Ease of first use

Manually editable

reusing and reproducing results obtained using research software. The choice for one WfMS or667

the other is strongly subjective and depends on the particular application and the preferences of668

its developers. The overview given in table 1 together with the assessments in section 5 may669

only serve as a basis for an individual decision making.670

For researchers that want to start using a WfMS, an important factor is how easy it is to get a first671

workflow running. We note again that the evaluation criteria of the requirement for the ease of672

first use are difficult to measure objectively and refer to section 3.9 for what is considered easy673

to use in this work. For projects that are written in Python, a natural choice may be doit, which674

operates in Python and is easy to use for anyone familiar with the language. Another benefit675

of this system is that one can use Python functions as processes, making it possible to easily676

transfer data from one process to the other via memory without the need to write and read to677

disk. In order to make a workflow portable, developers have to provide additional resources that678

allow users to prepare their environment such that all software dependencies are met, prior to679

the workflow execution.680

To create portable workflows more easily, convenient tools are Nextflow or Snakemake, where681

one can specify the compute environment in terms of a conda environment file or a container682

image on a per-process basis. They require to learn a new domain-specific language, however,683

our assessment is that it is easy to get started as only little syntax has to be learned in order to get684

a first workflow running.685

The strengths ofAiiDA are the native support for distributing the workload on different (registered)686

machines, the comprehensive provenance tracking, and also the possibility to transfer data among687

processes without the creation of intermediate files.688

CWL has the benefit of being a language standard rather than a specific tool maintained by a689

dedicated group of developers. This has led to a variety of tooling developed by the community690

as e. g. editors for visualizing and modifying workflows with a GUI. Moreover, the workflow691

description states the version of the standard in which it is written, such that any interpreter692

supporting this standard should execute it properly, which reduces the problem of version pinning693

ing.grid, 2023 20



RESEARCH ARTICLE

on the level of the workflow interpreter.694

Especially for larger workflows composed of processes that are still under development, and695

are thus changing over time, it may be useful to rely on tools that allow to define the process696

interfaces by means of strongly-typed arguments. This can help to detect errors early on, e. g. by697

static type checkers. CWL and AiiDA support the definition of strongly-typed process interfaces.698

The rich set of options and features of these tools make them more difficult to learn, but at the699

same time expose a large number of possibilities.700

7 Outlook701

This overview is not meant to be static, but we plan to continue the documentation online702

in the git repository [16] that contains the implementation of the exemplary workflow. This703

allows us to take into consideration other WfMSs in the future, and to extend the documentation704

accordingly. In particular, we would like to make the repository a community effort allowing705

others to contribute either by modifications of the existing tools or adding new WfMSs. All of706

our workflow implementations are continuously and automatically tested using GitHub Actions707

https://github.com/BAMresearch/NFDI4IngScientificWorkflowRequirements/ac708

tions, which may act as an additional source of documentation on how to launch the workflows.709

One of the challenges that we have identified is the use of container technology in the HPC710

environment. In most cases, the way users should interact with such a system is through a module711

system provided by the system administrators. The module system allows to control the software712

environment (versioning, compilers) in a precise manner, but the user is limited to the provided713

software stack. For specific applications, self-written code can be compiled using the available714

development environment and subsequently run on the system, which is currently the state of715

the art in using HPC systems. However, this breaks the portability of the workflow.716

Container technology, employing the “build once and run anywhere” concept, seems to be a717

promising solution to this problem. Ideally, one would like to be able to run the container718

application on the HPC system, just as any other MPI-distributed application. Unfortunately,719

there are a number of problems entailed with this approach.720

When building the container, great care must be taken with regard to the MPI configuration,721

such that it can be run successfully across several nodes. Another issue is the configuration of722

Infiniband drivers. The container has to be build according to the specifics of the HPC system723

that is targeted for execution. From the perspective of the user, this entails a large difficulty,724

and we think that further work needs to be done to find solutions which enable non-experts in725

container technology to execute containerized applications successfully in an HPC environment.726

Furthermore, challenges related to the joint development of workflows became apparent. In this727

regard, strongly-typed interfaces are required in order to minimize errors and transparently and728

clearly communicate the metadata (inputs, outputs) associated with a process in the workflow.729

This is recommended both for single parameters, but it would be also great to extend that idea730

to files - not only defining the file type which is already possible within CWL - but potentially731

allowing a type checking of the complete data structure within the file. However, based on our732

experience with the selected tools, these interfaces and their benefits come at the cost of some733

ing.grid, 2023 21

https://github.com/BAMresearch/NFDI4IngScientificWorkflowRequirements/actions
https://github.com/BAMresearch/NFDI4IngScientificWorkflowRequirements/actions
https://github.com/BAMresearch/NFDI4IngScientificWorkflowRequirements/actions


RESEARCH ARTICLE

form of plugin or wrapper around the software that is to be executed, thus possibly limiting the734

functionality of the wrapped tool. This means there is a trade-off between easy authoring of the735

workflow definition (e. g. easily executing any shell command) and implementation overhead736

for the sake of well-defined interfaces.737

Another aspect is how the workflow logic can be communicated efficiently. Although all tools738

allow to generate a graph of the workflow, the dependencies between processes can only be739

visualized for an executable implementation of the workflow, which most likely does not exist740

in early stages of the project where it is needed the most.741

An important aspect is the documentation of the workflow results and how they have been742

obtained. Most tools offer an option to export the data provenance graph, however it would be743

great to define a general standard supported by all tools as e. g. provided by CWLProv [26].744

A further direction of future research may also be a better measure for the ease of (first) use. As745

stated in section 3.9 this is rather subjective and depends on the experience and skills of the user.746

One could possibly treat this requirement statistically by carrying out a survey of the users of the747

respective tools.748

Financial disclosure749

None reported.750

Conflict of interest751

The authors declare no potential conflict of interests.752

8 Acknowledgements753

The authors would like to thank the Federal Government and the Heads of Government of the754

Länder, as well as the Joint Science Conference (GWK), for their funding and support within the755

framework of the NFDI4Ing consortium. Funded by the German Research Foundation (DFG) -756

project number 442146713. Moreover, we would like to thank Sebastiaan P. Huber, Michael757

R. Crusoe, Eduardo Schettino, Ricardo Wurmus, Paolo Di Tommaso and Johannes Köster for758

their valuable remarks and comments on an earlier version of this article and the workflow759

implementations.760

9 Roles and contributions761

Philipp Diercks: Investigation; methodology; software; writing - original draft; writing - review762

and editing.763

Dennis Gläser: Investigation; methodology; software; writing - original draft; writing - review764

and editing.765

Ontje Lünsdorf: Investigation (supporting); software; writing - original draft (supporting).766

Michael Selzer: Writing - review and editing (supporting).767

ing.grid, 2023 22



RESEARCH ARTICLE

Bernd Flemisch: Conceptualization (supporting); Funding acquisition; Project administration;768

Writing - review and editing.769

Jörg F. Unger: Conceptualization (lead); Funding acquisition; Project administration; Writing -770

original draft (supporting); Writing - review and editing.771

References772

[1] Enis Afgan et al. “The Galaxy platform for accessible, reproducible and collaborative773

biomedical analyses: 2018 update”. In: Nucleic Acids Research 46.W1 (May 2018),774

W537–W544. ISSN: 0305-1048. DOI: 10.1093/nar/gky379. eprint: https://aca775

demic.oup.com/nar/article-pdf/46/W1/W537/25110642/gky379.pdf. URL:776

https://doi.org/10.1093/nar/gky379.777

[2] James Ahrens, Berk Geveci, and Charles Law. “ParaView: An End-User Tool for Large-778

Data Visualization”. In: The Visualization Handbook. Elsevier, 2005.779

[3] Mohammad Akhlaghi et al. “Toward Long-Term and Archivable Reproducibility”. In:780

Computing in Science & Engineering 23.3 (May 2021), pp. 82–91. ISSN: 1521-9615,781

1558-366X. DOI: 10.1109/mcse.2021.3072860. URL: https://doi.org/10.1109782

/mcse.2021.3072860.783

[4] M.S. Alnaes et al. “The FEniCS Project Version 1.5”. In: Archive of Numerical Software 3784

(2015). DOI: 10.11588/ans.2015.100.20553.785

[5] Peter Amstutz et al. Common Workflow Language, v1.0. https://doi.org/10.6084786

/m9.figshare.3115156.v2. July 2016. DOI: 10.6084/m9.figshare.3115156.v2.787

[6] Arne Babenhauserheide. SRFI 119: wisp: simpler indentation-sensitive scheme. https:788

//srfi.schemers.org/srfi-119/. June 2015.789

[7] Oren Ben-Kiki, Clark Evans, and Ingy döt Net. YAML Ain’t Markup Language (YAML)790

version 1.2. Accessed: 2022-08-31. Version 1.2. https://yaml.org/spec/1.2.2/.791

2021.792

[8] Michael R. Berthold et al. “KNIME: The Konstanz Information Miner”. In: Data Analysis793

, Machine Learning and Applications : Proceedings of the 31st Annual Conference of the794

Gesellschaft für Klassifikation e. V., Albert-Ludwigs-Universität Freiburg, March 7-9 ,795

2007. New York: Springer, 2007.796

[9] Neil P. Chue Hong et al. FAIR Principles for Research Software (FAIR4RS Principles).797

https://doi.org/10.15497/RDA00068. Version 1.0. May 2022. DOI: 10.15497798

/RDA00068. URL: https://doi.org/10.15497/RDA00068.799

[10] Iacopo Colonnelli et al. “StreamFlow: cross-breeding cloud with HPC”. In: IEEE Trans-800

actions on Emerging Topics in Computing 9.4 (2021), pp. 1723–1737. DOI: 10.1109801

/TETC.2020.3019202.802

[11] Ludovic Courtès. “Building a Secure Software Supply Chain with GNU Guix”. In: The803

Art, Science, and Engineering of Programming 7.1 (June 2022). ISSN: 2473-7321. DOI:804

10.22152/programming-journal.org/2023/7/1. URL: https://doi.org/10.2805

2152/programming-journal.org/2023/7/1.806

ing.grid, 2023 23

https://doi.org/10.1093/nar/gky379
https://academic.oup.com/nar/article-pdf/46/W1/W537/25110642/gky379.pdf
https://academic.oup.com/nar/article-pdf/46/W1/W537/25110642/gky379.pdf
https://academic.oup.com/nar/article-pdf/46/W1/W537/25110642/gky379.pdf
https://doi.org/10.1093/nar/gky379
https://doi.org/10.1109/mcse.2021.3072860
https://doi.org/10.1109/mcse.2021.3072860
https://doi.org/10.1109/mcse.2021.3072860
https://doi.org/10.1109/mcse.2021.3072860
https://doi.org/10.11588/ans.2015.100.20553
https://doi.org/10.6084/m9.figshare.3115156.v2
https://doi.org/10.6084/m9.figshare.3115156.v2
https://doi.org/10.6084/m9.figshare.3115156.v2
https://doi.org/10.6084/m9.figshare.3115156.v2
https://srfi.schemers.org/srfi-119/
https://srfi.schemers.org/srfi-119/
https://srfi.schemers.org/srfi-119/
https://yaml.org/spec/1.2.2/
https://doi.org/10.15497/RDA00068
https://doi.org/10.15497/RDA00068
https://doi.org/10.15497/RDA00068
https://doi.org/10.15497/RDA00068
https://doi.org/10.15497/RDA00068
https://doi.org/10.1109/TETC.2020.3019202
https://doi.org/10.1109/TETC.2020.3019202
https://doi.org/10.1109/TETC.2020.3019202
https://doi.org/10.22152/programming-journal.org/2023/7/1
https://doi.org/10.22152/programming-journal.org/2023/7/1
https://doi.org/10.22152/programming-journal.org/2023/7/1
https://doi.org/10.22152/programming-journal.org/2023/7/1


RESEARCH ARTICLE

[12] Ludovic Courtès. “Functional Package Management with Guix”. In: European Lisp807

Symposium (June 2013). DOI: 10.48550/ARXIV.1305.4584. URL: https://arxiv808

.org/abs/1305.4584.809

[13] Michael R. Crusoe et al. “Methods included. standardizing computational reuse and810

portability with the Common Workflow Language”. In: Commun. ACM 65.6 (June 2022),811

pp. 54–63. ISSN: 0001-0782, 1557-7317. DOI: 10.1145/3486897. URL: https://do812

i.org/10.1145/3486897.813

[14] Ewa Deelman et al. “Pegasus, a workflow management system for science automation”.814

In: Future Generation Computer Systems 46 (2015), pp. 17–35. ISSN: 0167-739X. DOI:815

10.1016/j.future.2014.10.008. URL: https://www.sciencedirect.com/sci816

ence/article/pii/S0167739X14002015.817

[15] Paolo Di Tommaso et al. “Nextflow enables reproducible computational workflows”.818

In: Nat Biotechnol 35.4 (Apr. 2017), pp. 316–319. ISSN: 1087-0156, 1546-1696. DOI:819

10.1038/nbt.3820. URL: https://doi.org/10.1038/nbt.3820.820

[16] Philipp Diercks et al. NFDI4Ing Scientific Workflow Requirements. Version 0.0.1. https:821

//github.com/BAMresearch/NFDI4IngScientificWorkflowRequirements. July822

2022.823

[17] European Commission and Directorate-General for Research and Innovation. Realising824

the European open science cloud : first report and recommendations of the Commission825

high level expert group on the European open science cloud. Publications Office, 2016.826

DOI: 10.2777/940154.827

[18] Philip Ewels et al. “Cluster Flow:A user-friendly bioinformatics workflow tool [version 2;828

referees: 3 approved].” In: F1000Research 5 (2016), p. 2824. DOI: 10.12688/f1000res829

earch.10335.2. URL: http://dx.doi.org/10.12688/f1000research.10335.2.830

[19] Christophe Geuzaine and Jean-François Remacle. “Gmsh: A 3-D finite element mesh831

generator with built-in pre- and post-processing facilities. THE GMSH PAPER”. In:832

Int. J. Numer. Meth. Engng. 79.11 (May 2009), pp. 1309–1331. ISSN: 0029-5981. DOI:833

10.1002/nme.2579. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.10834

02/nme.2579. URL: https://doi.org/10.1002/nme.2579.835

[20] Carole Goble et al. “FAIR Computational Workflows”. In: Data Intelligence 2.1-2 (Jan.836

2020), pp. 108–121. ISSN: 2641-435X. DOI: 10.1162/dint_a_00033. eprint: https:837

//direct.mit.edu/dint/article-pdf/2/1-2/108/1893377/dint_a_00033.pd838

f. URL: https://doi.org/10.1162/dint_a_00033.839

[21] Lars Griem et al. “KadiStudio: FAIR Modelling of Scientific Research Processes”. In:840

Data Science Journal 21.1 (2022). DOI: 10.5334/dsj-2022-016.841

[22] Sebastiaan P. Huber. aiida-shell. Version 0.2.0. https://github.com/sphuber/aiid842

a-shell. June 2022.843

[23] Sebastiaan P. Huber et al. “AiiDA1.0, a scalable computational infrastructure for automated844

reproducible workflows and data provenance”. In: Sci Data 7.1 (Sept. 2020). ISSN: 2052-845

4463. DOI: 10.1038/s41597-020-00638-4. URL: https://doi.org/10.1038/s4846

1597-020-00638-4.847

ing.grid, 2023 24

https://doi.org/10.48550/ARXIV.1305.4584
https://arxiv.org/abs/1305.4584
https://arxiv.org/abs/1305.4584
https://arxiv.org/abs/1305.4584
https://doi.org/10.1145/3486897
https://doi.org/10.1145/3486897
https://doi.org/10.1145/3486897
https://doi.org/10.1145/3486897
https://doi.org/10.1016/j.future.2014.10.008
https://www.sciencedirect.com/science/article/pii/S0167739X14002015
https://www.sciencedirect.com/science/article/pii/S0167739X14002015
https://www.sciencedirect.com/science/article/pii/S0167739X14002015
https://doi.org/10.1038/nbt.3820
https://doi.org/10.1038/nbt.3820
https://github.com/BAMresearch/NFDI4IngScientificWorkflowRequirements
https://github.com/BAMresearch/NFDI4IngScientificWorkflowRequirements
https://github.com/BAMresearch/NFDI4IngScientificWorkflowRequirements
https://doi.org/10.2777/940154
https://doi.org/10.12688/f1000research.10335.2
https://doi.org/10.12688/f1000research.10335.2
https://doi.org/10.12688/f1000research.10335.2
http://dx.doi.org/10.12688/f1000research.10335.2
https://doi.org/10.1002/nme.2579
https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.2579
https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.2579
https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.2579
https://doi.org/10.1002/nme.2579
https://doi.org/10.1162/dint_a_00033
https://direct.mit.edu/dint/article-pdf/2/1-2/108/1893377/dint_a_00033.pdf
https://direct.mit.edu/dint/article-pdf/2/1-2/108/1893377/dint_a_00033.pdf
https://direct.mit.edu/dint/article-pdf/2/1-2/108/1893377/dint_a_00033.pdf
https://direct.mit.edu/dint/article-pdf/2/1-2/108/1893377/dint_a_00033.pdf
https://direct.mit.edu/dint/article-pdf/2/1-2/108/1893377/dint_a_00033.pdf
https://doi.org/10.1162/dint_a_00033
https://doi.org/10.5334/dsj-2022-016
https://github.com/sphuber/aiida-shell
https://github.com/sphuber/aiida-shell
https://github.com/sphuber/aiida-shell
https://doi.org/10.1038/s41597-020-00638-4
https://doi.org/10.1038/s41597-020-00638-4
https://doi.org/10.1038/s41597-020-00638-4
https://doi.org/10.1038/s41597-020-00638-4


RESEARCH ARTICLE

[24] Anubhav Jain et al. “FireWorks:Adynamic workflow system designed for high-throughput848

applications”. In: Concurrency Computat.: Pract. Exper. 27.17 (May 2015), pp. 5037–849

5059. ISSN: 1532-0626, 1532-0634. DOI: 10.1002/cpe.3505. URL: https://doi.o850

rg/10.1002/cpe.3505.851

[25] Ivo Jimenez et al. “The Popper Convention: Making Reproducible Systems Evaluation852

Practical”. In: 2017 IEEE International Parallel and Distributed Processing Symposium853

Workshops (IPDPSW). 2017, pp. 1561–1570. DOI: 10.1109/IPDPSW.2017.157.854

[26] Farah Zaib Khan et al. “Sharing interoperable workflow provenance: A review of best855

practices and their practical application in CWLProv”. In: GigaScience 8.11 (Nov. 2019).856

ISSN: 2047-217X. DOI: 10.1093/gigascience/giz095. URL: https://doi.org/1857

0.1093/gigascience/giz095.858

[27] Johannes Köster and Sven Rahmann. “Snakemake—a scalable bioinformatics workflow859

engine”. In:Method. Biochem. Anal. 34.20 (May 2018), pp. 3600–3600. ISSN: 1367-4803,860

1460-2059. DOI: 10.1093/bioinformatics/bty350. URL: https://doi.org/10861

.1093/bioinformatics/bty350.862

[28] Samuel Lampa et al. “SciPipe: A workflow library for agile development of complex863

and dynamic bioinformatics pipelines”. In: GigaScience 8.5 (Apr. 2019). ISSN: 2047-864

217X. DOI: 10.1093/gigascience/giz044. eprint: https://academic.oup.c865

om/gigascience/article-pdf/8/5/giz044/28538382/giz044.pdf. URL:866

https://doi.org/10.1093/gigascience/giz044.867

[29] Soohyun Lee et al. “Tibanna: Software for scalable execution of portable pipelines on the868

cloud”. In: Method. Biochem. Anal. 35.21 (May 2019), pp. 4424–4426. ISSN: 1367-4803,869

1460-2059. DOI: 10.1093/bioinformatics/btz379. eprint: https://academic870

.oup.com/bioinformatics/article-pdf/35/21/4424/31617561/btz379.pdf.871

URL: https://doi.org/10.1093/bioinformatics/btz379.872

[30] Felix Mölder et al. “Sustainable data analysis with Snakemake”. In: F1000Res 10 (Apr.873

2021), p. 33. ISSN: 2046-1402. DOI: 10.12688/f1000research.29032.2. URL:874

https://doi.org/10.12688/f1000research.29032.2.875

[31] Barend Mons et al. “The FAIR Principles: First Generation Implementation Choices and876

Challenges”. In: Data Intellegence 2.1-2 (Jan. 2020), pp. 1–9. ISSN: 2641-435X. DOI:877

10.1162/dint_e_00023. URL: https://doi.org/10.1162/dint_e_00023.878

[32] Simon P. Sadedin, Bernard Pope, and Alicia Oshlack. “Bpipe: A tool for running and man-879

aging bioinformatics pipelines”. In:Method. Biochem. Anal. 28.11 (Apr. 2012), pp. 1525–880

1526. ISSN: 1460-2059, 1367-4803. DOI: 10.1093/bioinformatics/bts167. eprint:881

https://academic.oup.com/bioinformatics/article-pdf/28/11/1525/1690882

5290/bts167.pdf. URL: https://doi.org/10.1093/bioinformatics/bts167.883

[33] Michael A. Salim et al. Balsam: Automated Scheduling and Execution of Dynamic, Data-884

Intensive HPC Workflows. https : / / arxiv . org / abs / 1909 . 08704. 2019. DOI:885

10.48550/ARXIV.1909.08704. URL: https://arxiv.org/abs/1909.08704.886

ing.grid, 2023 25

https://doi.org/10.1002/cpe.3505
https://doi.org/10.1002/cpe.3505
https://doi.org/10.1002/cpe.3505
https://doi.org/10.1002/cpe.3505
https://doi.org/10.1109/IPDPSW.2017.157
https://doi.org/10.1093/gigascience/giz095
https://doi.org/10.1093/gigascience/giz095
https://doi.org/10.1093/gigascience/giz095
https://doi.org/10.1093/gigascience/giz095
https://doi.org/10.1093/bioinformatics/bty350
https://doi.org/10.1093/bioinformatics/bty350
https://doi.org/10.1093/bioinformatics/bty350
https://doi.org/10.1093/bioinformatics/bty350
https://doi.org/10.1093/gigascience/giz044
https://academic.oup.com/gigascience/article-pdf/8/5/giz044/28538382/giz044.pdf
https://academic.oup.com/gigascience/article-pdf/8/5/giz044/28538382/giz044.pdf
https://academic.oup.com/gigascience/article-pdf/8/5/giz044/28538382/giz044.pdf
https://doi.org/10.1093/gigascience/giz044
https://doi.org/10.1093/bioinformatics/btz379
https://academic.oup.com/bioinformatics/article-pdf/35/21/4424/31617561/btz379.pdf
https://academic.oup.com/bioinformatics/article-pdf/35/21/4424/31617561/btz379.pdf
https://academic.oup.com/bioinformatics/article-pdf/35/21/4424/31617561/btz379.pdf
https://doi.org/10.1093/bioinformatics/btz379
https://doi.org/10.12688/f1000research.29032.2
https://doi.org/10.12688/f1000research.29032.2
https://doi.org/10.1162/dint_e_00023
https://doi.org/10.1162/dint_e_00023
https://doi.org/10.1093/bioinformatics/bts167
https://academic.oup.com/bioinformatics/article-pdf/28/11/1525/16905290/bts167.pdf
https://academic.oup.com/bioinformatics/article-pdf/28/11/1525/16905290/bts167.pdf
https://academic.oup.com/bioinformatics/article-pdf/28/11/1525/16905290/bts167.pdf
https://doi.org/10.1093/bioinformatics/bts167
https://arxiv.org/abs/1909.08704
https://doi.org/10.48550/ARXIV.1909.08704
https://arxiv.org/abs/1909.08704


RESEARCH ARTICLE

[34] Joerg Schaarschmidt et al. “Workflow Engineering in Materials Design within the BAT-887

TERY 2030+ Project”. In: Advanced Energy Materials 12.17 (2022), p. 2102638. DOI:888

https://doi.org/10.1002/aenm.202102638. eprint: https://onlinelibrary.w889

iley.com/doi/pdf/10.1002/aenm.202102638. URL: https://onlinelibrary890

.wiley.com/doi/abs/10.1002/aenm.202102638.891

[35] Eduardo Naufel Schettino. pydoit/doit: Task management & automation tool (python).892

https://doi.org/10.5281/zenodo.4892136. June 2021. DOI: 10.5281/zenodo893

.4892136. URL: https://doi.org/10.5281/zenodo.4892136.894

[36] Nico Schlömer. meshio: Tools for mesh files. https://doi.org/10.5281/zeno895

do.6346837. Version v5.3.4. Mar. 2022. DOI: 10.5281/zenodo.6346837. URL:896

https://doi.org/10.5281/zenodo.6346837.897

[37] Will Schroeder et al. The visualization toolkit : an object-oriented approach to 3D graphics.898

4th ed. Kitware, 2006.899

[38] Michael Sperber et al. “Revised6 Report on the Algorithmic Language Scheme”. In: J.900

Funct. Program. 19.S1 (Aug. 2009), p. 1. ISSN: 0956-7968, 1469-7653. DOI: 10.1017901

/s0956796809990074. URL: https://doi.org/10.1017/s0956796809990074.902

[39] Martin Uhrin et al. “Workflows in AiiDA: Engineering a high-throughput, event-based903

engine for robust and modular computational workflows”. In: Nato. Sc. S. Ss. Iii. C. S. 187904

(Feb. 2021), p. 110086. ISSN: 0927-0256. DOI: 10.1016/j.commatsci.2020.110086.905

URL: https://doi.org/10.1016/j.commatsci.2020.110086.906

[40] John Vivian et al. “Toil enables reproducible, open source, big biomedical data analyses”.907

In: Nat Biotechnol 35.4 (Apr. 2017), pp. 314–316. ISSN: 1087-0156, 1546-1696. DOI:908

10.1038/nbt.3772. URL: https://doi.org/10.1038/nbt.3772.909

[41] Kate Voss, Geraldine Van Der Auwera, and Jeff Gentry. Full-stack genomics pipelining910

with GATK4 + WDL + Cromwell [version 1; not peer reviewed]. slides. https://f1000911

research.com/slides/6-1381. 2017. DOI: 10.7490/f1000research.1114634.1.912

URL: https://f1000research.com/slides/6-1381.913

[42] Mark D. Wilkinson et al. “The FAIR Guiding Principles for scientific data management914

and stewardship”. In: Sci Data 3.1 (Mar. 2016). ISSN: 2052-4463. DOI: 10.1038/sdat915

a.2016.18. URL: https://doi.org/10.1038/sdata.2016.18.916

[43] Peter Williams and Contributors. The Tectonic Typesetting System. https://tectonic-917

typesetting.github.io/en-US/. Accessed: 2022-06-02. 2022.918

[44] Andy Wingo et al. GNU Guile. https://www.gnu.org/software/guile/. Feb. 2022.919

[45] LauraWratten, Andreas Wilm, and Jonathan Göke. “Reproducible, scalable, and shareable920

analysis pipelines with bioinformatics workflow managers”. In: Nat Methods 18.10 (Sept.921

2021), pp. 1161–1168. ISSN: 1548-7091, 1548-7105. DOI: 10.1038/s41592-021-012922

54-9. URL: https://doi.org/10.1038/s41592-021-01254-9.923

[46] Ricardo Wurmus et al. GUIX Workflow Language. https://guixwl.org. Version 0.5.0.924

July 2022.925

ing.grid, 2023 26

https://doi.org/https://doi.org/10.1002/aenm.202102638
https://onlinelibrary.wiley.com/doi/pdf/10.1002/aenm.202102638
https://onlinelibrary.wiley.com/doi/pdf/10.1002/aenm.202102638
https://onlinelibrary.wiley.com/doi/pdf/10.1002/aenm.202102638
https://onlinelibrary.wiley.com/doi/abs/10.1002/aenm.202102638
https://onlinelibrary.wiley.com/doi/abs/10.1002/aenm.202102638
https://onlinelibrary.wiley.com/doi/abs/10.1002/aenm.202102638
https://doi.org/10.5281/zenodo.4892136
https://doi.org/10.5281/zenodo.4892136
https://doi.org/10.5281/zenodo.4892136
https://doi.org/10.5281/zenodo.4892136
https://doi.org/10.5281/zenodo.4892136
https://doi.org/10.5281/zenodo.6346837
https://doi.org/10.5281/zenodo.6346837
https://doi.org/10.5281/zenodo.6346837
https://doi.org/10.5281/zenodo.6346837
https://doi.org/10.5281/zenodo.6346837
https://doi.org/10.1017/s0956796809990074
https://doi.org/10.1017/s0956796809990074
https://doi.org/10.1017/s0956796809990074
https://doi.org/10.1017/s0956796809990074
https://doi.org/10.1016/j.commatsci.2020.110086
https://doi.org/10.1016/j.commatsci.2020.110086
https://doi.org/10.1038/nbt.3772
https://doi.org/10.1038/nbt.3772
https://f1000research.com/slides/6-1381
https://f1000research.com/slides/6-1381
https://f1000research.com/slides/6-1381
https://doi.org/10.7490/f1000research.1114634.1
https://f1000research.com/slides/6-1381
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1038/sdata.2016.18
https://tectonic-typesetting.github.io/en-US/
https://tectonic-typesetting.github.io/en-US/
https://tectonic-typesetting.github.io/en-US/
https://www.gnu.org/software/guile/
https://doi.org/10.1038/s41592-021-01254-9
https://doi.org/10.1038/s41592-021-01254-9
https://doi.org/10.1038/s41592-021-01254-9
https://doi.org/10.1038/s41592-021-01254-9
https://guixwl.org


RESEARCH ARTICLE

[47] Andy B. Yoo, Morris A. Jette, and Mark Grondona. “SLURM: Simple Linux Utility for926

Resource Management”. In: Job Scheduling Strategies for Parallel Processing. Ed. by927

Dror Feitelson, Larry Rudolph, and Uwe Schwiegelshohn. Berlin, Heidelberg: Springer928

Berlin Heidelberg, 2003, pp. 44–60. ISBN: 978-3-540-39727-4.929

ing.grid, 2023 27


	Introduction
	Introduction to workflow management systems

	User stories
	Transparent and reproducible research paper
	Joint research (group)
	Complex hierarchical computations

	Specific requirements on workflow management systems
	Support for job scheduling system
	Monitoring
	Graphical user interface
	Data provenance
	Compute environment
	Hierarchical composition of workflows
	Interfaces
	Up-to-dateness
	Ease of first use
	Manually editable workflow definition
	Platform for publishing and sharing workflows

	Exemplary workflow
	Tool comparison
	AiiDA
	Common Workflow Language
	doit
	Guix Workflow Language
	Nextflow and Snakemake
	Evaluation matrix

	Summary
	Outlook
	Acknowledgements
	Roles and contributions

